Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Binom dağılımı

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
\!'nin kli kombinasyonu" olur. Bunun değişik bir ifadesi C(n, k) veya nCk olarak verilebilir. Böylece dağılımın adının nereden ortaya çıkartıldığı görülmektedir. Bu formülün biraz daha detaylı açıklanması şöyle yapılabilir. k sayıda başarı (p) ve n - k sayıda başarısızlık (1 - p) istemekteyiz. Ancak, k sayıda başarı n sayıda denemenin belirli olmayan her bir tarafında ortaya çıkabilir. n deneme sayısı içinde k başarı sayısı C(n,k) değişik şekilde yerleştirilebilir. Binom dağılıma uyan problemlerde olasılık bulmak için hazırlanmış referans tablosu bir sıra alt-tablodan oluşur ve her bir alt-tablo n/2 sayıya kadar değerle ile doldurulur. k>n/2 olduğu için olasılık değeri şu formülün uygulaması ile bulunur. Böylece aranan olasılık değeri (binom genellikle simetrik olmadığı için) tablolarda gösterilen değişik değerde k ve değişik değerde p kullanarak bulunur. Yığmalı dağılım fonksiyonu Yığmalı dağılım fonksiyonu bir tanzim edilmiş tam olmayan beta fonksiyonu kullanılması ile şöyle ifade edilebilir: Ancak k 'in kesirsiz bir tam sayı ve 0 ≤ k ≤ n olması gereklidir. Eğer x gerçek bir tam sayı değilse veya pozitif değerde değilse, bu ifade şu alternatif şekle getirilebilir Eğer k ≤ np ise dağılım fonksiyonun aşağı kuyruk tarafı için yukarı sınırlar değerleri ortaya çıkartılabilir. Özellikle, önce Hoeffding'in eşitsizliği kullanılarak sınır değeri şöyle bulunur: ve sonra Chernoff'un eşitsizliği kullanılarak şu sınır ortaya çıkartılır: Ortalama, varyans ve mod Eğer X binom dağılım gösteren bir rassal değişken ise, bu gerçek şöyle ifade edilir. X ~ B(n,p) ise, X in beklenen değeri olur ve varyans değeri ise olur. Bu gerçeğin ispatı şöyle yapılabilir: Önce yalnız tek bir Bernoulli denemesi incelensin. Bunun sonucu ya 1 (başarı) veya 0 olabilir; bunların olasılıkları sırasıyla p ve 1 - p olur. Bu deneyin ortalamasının μ = p olduğu bilinmektedir. Varyans ise tanımına göre olur. Şimdi n sayıda Bernoulli denemesi (yani genel bir binom dağılımı) ele alındığı kabul edilsin. Eğer denemelerin her biri bağımsız ise, her bir denemenin varyansı diğer deneme varyanslarıyla birlikte toplamları alınırsa şu ifadeyi elde edilir: X in mod değerini bulmak için bir tam sayı olan m = (n + 1)p ifadesi tanımlanır ve X in (n + 1)p değerinden daha eksik değerde veya ayni değerde en büyük tam sayı olduğu bilinir. Böylece hem m - 1 hem de m iki ayrı mod değeri oluştururlar. Burada dikkat edilmesi gereken bir gerçek de binom dağılımının çift mod göstermesine rağmen her çift mod gösteren dağılımın bir binom dağılımı olmadığıdır. Ortalama ve varyansın açık olarak elde edilmeleri Binom dağılım için ortalama ve varyans değerleri açıkça ilk tanımsal prensipler kullanılarak elde edilebilirler. Bu iki değerin ortaya çıkartılması için şu toplamlar kullanılır. Bu toplamlardaki terimlerin yerleri değiştirilerek binom olasılık kütle fonksiyonunun tümünde toplamın her zaman 1'e eşit olmasını sağlarız. Ortalama Bir ayrık rassal değişken için beklenen değer tanımını bir binom dağılım için uygulanir. Bu seride k=0 indeksli birinci terimin değeri 0 'a eşittir; çünkü birinci faktör k sıfırdır. Bunu bertaraf edersek alt limiti k=1 'e indirgenmiş olunur. Faktör ifadelerinden n ile k faktörlerini çekip alırsak ve p için birinci üssü ayırılırsa; indekslerin yeniden tanımlanmasına hazırlanmış olur: Yeni isim olarak m = n - 1 ve s = k - 1 kullanabilir. Bu işlem yapılması ile toplamın değeri değişmez, ama daha kolayca tanımlanan şu ifade ortaya çıkar: Ortaya çıkan toplam bir binom dağılımının tümü için toplamdır (Olasılık kütle fonksiyonu ortaya çıktığı gibi ilk toplamdan bir sıra alttadır). Böylece Varyans Varyans değeri şöyle tanımlanmaktadır: (bak: varyans, 10. Varyans için hesaplama formülü): Bu formülün kullanılışında görülmektedir ki X ifadesinin beklenen değerinin de hesaplanması gerekmektedir. Bu değer şu formüle göre bulunabilir: Yukarıda ortalama formülünü elde etmeye çalışırken kullandığımız yöntemi kullanarak, k nin bir faktörünün değeri açığa çıkartılabilir ve böylece şu ifade elde edilir: (tekrar, m = n - 1 ve s = k - 1). Bu toplamı iki değişik toplama ayırabiliriz ve her bir toplam ifadesi şöyle bulunur: Birinci toplam yukarıda ortalama bulurken ortaya çıkardığımız ifadenin aynıdır ve mp değerine eşittir. İkinci toplam değer ise 1'e eşit olur. Bu sonucu varyans için ifadenin içine koyarsak ve ortalama için ifadeyi de, yani (E(X) = np) de, konulursa varyans için şu formülü elde edilir: iLa Diğer dağılımlarla ilişkiler Binom değerlerin toplamı Eğer X ~ B(n, p) ve Y ~ B(m, p) iki bağımsız binom dağılımlı değişken iseler, o zaman X + Y toplam ifadesi de bir binom dağılımlı değişkendir. Bu toplam değişkenin dağılımı olarak ifade edilir. Normal yaklaşım sağ|upright=1.14|küçükresim|n = 6 ve p = 0.5 olursa Binom (OYF) Olasılık Yoğunluk Fonksiyonu ve normal dağılıma yaklaşım. Eğer n yeterce büyük ise, dağılımın çarpıklığı çok bariz olmaz ve uygun bir süreklilik doğrulaması kullanılırsa, B(n,p) olarak tanımlanan bir binom dağılım yerine ile tanımlanan bir simetrik normal dağılım çok iyi bir yaklaşık olarak kullanılabilir. n değerinin yeter derecede büyük olup olmadığını tespit etmek için çeşitli amprik kurallar kullanılabilir. Bir amprik kurala göre hem np ve hem de n(1 - p) 5'ten daha büyük olmalıdır. Fakat değişik istatistik otoriteleri değişik değerler de kabul etmektedirler; örneğin bazı kaynaklara göre gereken değerler 10'u aşmalıdır. Hangi değerlerin kullanılacağı arzu edilen yaklaşım dakikliğine bağlıdır. Çokça kullanılan diğer bir ampirik kural ise şu eşitlik ifadesinin bulunup bulunmadığına dayanır. Süreklilik doğrulaması operasyonunun kullanışı şu örnek ile gösterilebilir. Bir binom rassal değişken X için olasılığı, yani Pr(X ≤ 8) değerini, bulmak istediği kabul edilsin. Eğer Y rassal değişkeninin normal yaklaşım ile verilen bir dağılımı varsa Pr(X ≤ 8) değeri Pr(Y ≤ 8.5) ifadesi ile yaklaşık olarak bulunabilir. Burada ikinci terime 0.5 eklenmesi (yani 8 yerine 8.5 kullanılması) süreklilik doğrulaması operasyonudur; eğer bu kullanılmasaydı, doğrulama yapılmamış normal yaklaşık değer daha az dakik sonuçlar vereceği bilinmektedir. Büyük değerde n için doğru binom formülü kullanarak hesap yapılması çok büyük emek gerektirmekte olduğu için, özellikle bilgisayarların hemen el altında olmadığı günlerde, bu yaklaşım çok büyük zaman ve emek tasarrufu sağlamaktaydı. Normal dağılım ile yaklaşım ilk olarak 1733de Abraham de Moivre tarafından Şanslar için Doktrin adlı kitabında ortaya atılmıştır. Sonradan bu yaklaşımın kullanışı, B(n,p) n sayıda bağımsız ve tıpatıp ayni şekilde dağılım gösteren 0-1 değerli gösterge değişkeni olduğu için, merkezsel limit teoreminin bir sonucu olarak görülmektedir. Örneğin, büyük bir anakütleden gelen n kişilik bir örnek alarak, bir cümle vererek bir belirli fikirin kabul edilip edilmediğini öğrenmek istediğimizi düşünelim. Bu fikri kabul edenler oranı, tabiidir ki kullanılan örneğe bağlı olacaktır. Eğer n sayıda kişi kapsayan birçok gerçekten rassal olan örnekleri tekrar tekrar bulunarak, bu fikri kabul edenlerin oranı ortalaması gerçek anakütle kabul edenler oranı olan p olan ve standart sapması σ = (p(1 - p)n) olan bir normal dağılım ile yaklaşım sağlanabilecektir. Örnek büyüklüğü olan n in büyük olma halinde yaklaşım sonucu iyi olacaktır, çünkü beklenen değerlerin bir oranı küçüldükçe bilinmeyen p parametresini yaklaşım değeri daha dakik olmasını sağlamaktadır. Poisson yaklaşımı np çarpım ifadesi değişmeden kalırken, deneyleme sayısı sonsuzluk değerine yaklaşırsa, binom dağılımı Poisson dağılımına yaklaşım gösterir. Buna dayanarak, eğer n yeter derecede büyük ve ve p yeter derecede küçük ise, B(n,p) ile tanımlanan bir binom dağılımı yerine λ = np parametreli bir Poisson dağılımı yaklaşık olarak kullanılabilir. Bu yaklaşımını uygun olarak kullanılabilmesi için empirik olarak parametrelerin şu değerlere uyması gerektiği kabul edilmiştir: ya n ≥ 20 ve p ≤ 0.05 yahut da n ≥ 100 ve np ≤ 10. Binom dağılımlar için limitleri n değeri ∞'ye yaklaşırken ve p 0'a yaklaşırken, eğer np değeri değişmeden λ > 0 olarak kalırsa veya asgari olarak np λ > 0 değerine yaklaşırsa, o zaman (n, p) parametreli Binom dağılımı, λ beklenen değeri olan bir Poisson dağılımına yaklaşır. Eğer p değeri değişmeden kalırken, n değeri ∞'ye yaklaşırsa teriminin dağılım beklenen değeri 0 ve varyans değeri 1 olan bir normal dağılıma yaklaşır. (Bu Merkezsel limit teoreminin özel bir halidir.) Ayrıca bakınız Galton kutusu Beta dağılımı Hipergeometrik dağılım Multinom dağılımı Negatif binom dağılımı Poisson dağılımı SOCR Normal dağılım Kaynakça Luc Devroye, Non-Uniform Random Variate Generation, New York: Springer-Verlag, 1986. Özellikle Bölüm X, Aralıklı Tekdeğişirli Dağılımlar kısmına bakın. Voratas Kachitvichyanukul ve Bruce W. Schmeiser, Binomial random variate generation, Communications of the ACM 31(2):216–222, February 1988. Dış bağlantılar Binom Olasılık Dağılım Hesaplayıcısı Binom Dağılımlı Olasılık İçin Basit Açıklama "Binomial Distribution" hazırlayan : Chris Boucher, Wolfram Gösterim Projesi, 2007. Kategori:Ayrık olasılık dağılımları Kategori:Faktöriyel ve binomi konuları
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri