Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Büyük Patlama kronolojisi

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
Büyük Patlama Kronolojisi, Evrenin kronolojisi büyük patlama kozmolojisine göre evrenin geçmiş ve geleceğini tanımlar. Planck çağından beri evrenin egemen bilimsel modellere göre nasıl geliştiğini kozmolojik koordinatların zaman parametrelerini kullanarak açıklar. Evren'in genişlemesinin 13,8 milyar yıl önce başlamış olduğu tahmin edilmektedir. Evrenin kronolojisini özetlemek için 4 ana parçaya ayırmak uygundur. küçükresim|upright=2.39|Evrenin Tarihi - yerçekimisel dalgalar hipotezi büyük patlamadan hemen sonra ışıktan daha hızlı genişleyen kozmik enflasyondan meydana gelmiştir. Evrenin çok erken safhalarında, Planck çağından kozmik enflasyona kadar ya da kozmik zamanın ilk pikosaniyelerinden itibaren bu süre şu andaki parçacık fiziğindeki deney kavrayışının ötesinde aktil teori araştırma alanıdır. Erken evren, kuark çağından foton çağına kadar, ya da kozmik zaman ilk 380.000 yılında tanıdık kuvvetler ve temel parçacıklar ortaya çıktı ancak evren plazma durumunda takip eden "karanlık çağda" 380.000 yılından 150 milyon yıla kadar kaldı. Bu durumda evren şeffaf olmasına rağmen büyük ölçeklerde yapılar henüz oluşmamıştı. Yaklaşık 150 milyon yıl yıldız evrimi, galaksi oluşumu ve evrimi ve galaksi kümeleri ve üstkümelerin oluşumu da dahil olmak üzere büyük ölçekli yapı oluşumu günümüze kadar sürdü. Galaksimizin ince bir disk olarak oluşması yaklaşık 5 milyar (9 Gya) yıl sürdü. Güneş sistemimizin oluşması yaklasık 9.2 milyar (4.6 Gya) yıl sürdü. Bu oluşumla birlikte dünya üzerindeki hayatın doğması yaklaşık 9.8 milyar (4 Gya) yıl sürdü. Uzak bir gelecekte yıldızların oluşumunun durmasından sonra evrenin nihai kaderı için çeşitli senaryolar vardır. İleri Erken Dönemde Evren Evrenin en erken dönemini ilgilendiren tüm fikirler (evrendoğum) kuramsaldır. Bugün, hiçbir parçacık hızlandırıcı deneyi, dönemi anlamayı sağlayacak şiddetteki enerjilere ulaşamamaktadır. İleri sürülen tüm senaryolar, temel farklılıklar göstermektedir. Bu senaryolara örnek olarak; Hartle-Hawking ilk durumu, sicim durumu (manzarası), Bran enflasyonu, sicim gaz kozmolojisi ve the ekspirotik evren verilebilir. Bu örneklerden bazıları birbiriyle bağdaşır. Planck Dönemi 10 saniyeden daha kısa sürede gerçekleşmiştir. Planck çağı (enflasyonun olmadığı) büyük patlama kozmolojisinde yüksek sıcaklığın bulunduğu dönemde dört temel kuvvetin elektromanyetizma ,yerçekimi, zayıf nükleer etkileşim ve güçlü nükleer etkileşimin olduğu dönemdir. Bu büyük sıcaklıklarda fizik adına çok az şey anlaşılabilir. Farklı hipotezler farklı senaryolar sunar. Geleneksel büyük patlama kozmolojisi bu andan önce yerçekimsel tekilliğin olduğunu tahmin eder. Ancak bu teori genel göreliliğe ve kuantum etkilerinin yıkılmasına bel bağlar. Enfasyon kozmolojisinde enflasyonun sonundan önceki zamanda ( büyük patlamadan sonra aşağı yukarı 10 saniye) geleneksel büyük patlama çizgisini takip etmez. Planck çağını formüle etmek için birçok model girişimde bulundu. Bunlardan bir tanesi kurgusal fikirler sunan "Yeni fizik"tir. Örnek olarak Harttle-Hawking başlangıç durumu, sicim gaz kozmolojisi ve ekpyrotic evren bulunmaktadır. Büyük Birleşme Dönemi Büyük Patlama'dan sonra 10 ile 10 saniye arasından gerçekleşmiştir. Evren Planck döneminden çıkıp genişlemeye ve soğumaya başlayınca yer çekimi kuvveti, diğer temel kuvvetler olan elektromanyetizma ile zayıf nükleer kuvvetten, yani gauge etkileşimlerinden ayrılarak farklılaşmaya başlamıştır. Hatta fizik, bu dönemde bu temel kuvvetlerin, dünyanın gözlenen güçlerini üretmeyi durduran Standart Model'in gauge grubunu da kapsayan çok daha büyük bir gruba dahil olduğu büyük birleşme ile açıklanabilir. Kaldı ki nükleer enerjinin zayıf nükleer kuvvetten kopmasıyla bu büyük birleşme de bozulmuştur. Bu durum, patlama ardından genişleme olur olmaz görülmüştür. Bazı teorilere göre de bu olay manyetik tekkutupları yaratmıştır. Güçlü etkileşim ve zayıf etkileşimin büyük birleşme kuramı, bu dönemde sadece Higgs bozonu parçacığının görülmesinin beklenebileceğini anlatır. Elektro-Zayıf Dönemi Büyük patlamadan sonra 10 (enflasyonun sonu ) ile 10 saniyeler arasında. Evrenin sıcaklığı yeterince düşük iken geleneksel büyük patlama kozmolojisine göre, elektrozayıf çağ, Büyük Patlama'nın ardından 10 saniye sonra başladı. Evrenin sıcaklığı,güçlü kuvveti elektro zayıf kuvvetten ayıracak kadar düşüktü. Enflasyon kozmolojisinde enflasyon çağı, elektro-zayıf çağ yaklaşık olarak 10 saniyede son bulduğunda başladı. Enflasyon Dönemi Büyük patlamadan sonra 10 saniye sonra başladı. Kozmik enflasyon enflasyon denilen hipotez alan tarafından ivmelenerek genişlemesiyle üretilen bir çağdır. Bu çağdaki özellikler Higgs alanı ve karanlık enerji ile benzerlikler gösterir. Genişleme yavaşlarken homojenlikten gelen sapmalar büyüdü ve evreni daha kaotik bir hale getirdi. Genişlemenin hızlanmasıyla evren daha homojen bir hale geldi. Geçmişteki uzun süre devam eden enflasyon genişlemesi evrendeki yüksek derecedeki homojenliği açıklar. Enflasyondan önceki durumda evren aşırı derecede düzensiz olmasına rağmen, bugün bile gözlemlenen büyük ölçeklerde homojenlik gözükür. Enflasyon alanı büyük patlama genişlemesinde başlayan sıradan bir nokta olarak adlandırılan "yeniden ısınma" sıradan parçacıkların içine doğru bozunmaya başlayınca, enflasyon sona erdi. Yeniden ısınma süresi genellikle büyük patlamadan sonraki zaman diye anılır. Bu öyle bir zamana değinir ki o zamanda geleneksek kozmoloji (enflasyon olmayan) büyük patlama tekilliği ile evrenin sıcaklığının düşmesi arasında geçmiştir. Enflasyon kozmolojisinden geleneksel büyük patlama meydana gelmedi. En basit enflasyona ait modellere göre, enflasyon Big Bang'den sonra yaklaşık 10 saniyeye karşılık gelen bir sıcaklıkta sona erdi. Yukarıda açıklandığı gibi, bu enflasyon çağı 10 saniyeden az sürdü anlamına gelmez. Aslında, evrenin gözlenen homojenliğini açıklamak için, bu süre 10 saniyeden daha uzun olmalıdır. Enflasyon Kozmolojisinde en erken anlam dolu zaman "Büyük patlamadan sonrasında" enflasyonun bittiği zamandır. 17 Mart 2014 tarihinde, BICEP2 işbirliği ile astrofizikçiler enflasyon yerçekimi dalgalarının B-mode güç spekturumunda keşfedildiğini duyurdular. Bu keşif enflasyon teorisi için açık deneysel bir kanıt olarak yorumlandı. Ancak, Haziran 19, 2014 tarihinde, enflasyon bulgularının rapor edilmesiyle güven düştü ve son olarak, 2 Şubat 2015'te, BICEP2/Keck ve Planck uydusunun ortak veri analizleriyle B-mode larının keşfi için istatistiklerin çok düşük olduğu yorumlandı ve bunun sebebinin Samanyolundaki kutuplaşmış tozlara dayandırdılar. Baryogenez Günümüzde evrendeki baryonlarının miktarının anti baryonlara göre neden bu kadar çok olduğunu açıklayacak yeterli gözlemsel bir kanıt yoktur. Bu fenomen için kozmolojik enflasyonun bitmesinden bir süre sonra gözlemlerde sayılacak olan adayın Sakharov koşullarını tatmin etmesi gerekmektedir. Parçacık fiziği Bu koşullar altında karşılaşmış asimetriler için bu simetrilerin evrende gözlemlenen baryon ve anti baryonlardan sayılabilmesi için deneysel olarak çok küçük olduğunu söyler. Erken Dönemde Evren Kozmik enflasyon sona erdikten sonra evren, kuark-gluon plazması ile doldu. Bu noktadan itibaren evrenin erken aşması fizik tarafından daha iyi anlaşılmaktadır ve enerji kuark çağındaki enerjiler direkt olarak deneylere cevap verebilir. Süpersimetrinin Kırılması Eğer süpersimetri evrenimizin bir özelliği ise, o zaman enerji 1 TeV (elektro zayıf simetri ölçeği) daha düşük bir noktada kırılamaz. Parçacıkların kütleleri ve onların süper partnerleri hiçbir şekilde bilinen parçacıkların gözlenemeyen süper partnerlerine eşit olamaz. Kuark dönemi ve Elektrozayıf Simetrinin Kırıldığı Dönem Büyük patlamadan sonra 10 saniye ile 10 saniye arasında. Evrenin sıcaklığı belirli birçok yüksek enerji seviyesinin altına düştüğünde Higgs alanının kendiliğinden beklenen vacum değerini kazanır. Bu değer ki elektrozayıf gauge simetrisini kırar. Bu kırılmayla ilgili iki etki görülür. 1. Zayıf kuvvet ve elektromanyetik kuvvet ve kendi bozonlarının farklı bir şekilde açıkça günümüz evreninde farklı dizilerde görülür. 2. Higgs mekanizması vasıtasıyla, bütün element parçacıkları Higgs alanıyla etkileşiminden kütle kazanır. Bu çağın sonunda, temel etkileşimlerden olarak yerçekimi, elektromanyetizma, güçlü etkileşim ve zayıf etkileşim temel etkileşimleri artık bugünkü biçimlerini almış ve temel parçacıklar kütlelerini kazanmış olur. Ancak hala evrenin sıcaklığı quarkların bükülerek hadronları oluşturması için çok sıcaktır. Hadron Dönemi Büyük patlamadan sonra 10 saniye ile 1 saniye arasında olmuştur. Evreni oluşturan kuark-gluon plazmalar hadronlara kadar soğumaya devam etti. Bunlara proton ve nötronlardan oluşan baryonlarda dahildir. Büyük patlsmadan yaklaşık 1 saniye sonra nötrino çiftleri ayrışarak uzay boyunca serbestçe harekete başladı. Nötrino enerjileri gözlemleyebilmek için çok düşük olduğundan dolayı kozmik nötrino arka planı kozmik mikro dalgaların arka planına benzer. Ancak kozmik nötrino arka planlarının var olduğuna dair kesin bir kanıt yoktur. Lepton Dönemi Büyük patlamadan sonra 1 saniye ile 10 saniye arasında olmuştur. Hadronların ve anti-hadronların büyük çoğunluğu birbirlerini hadron çağının sonunda ortadan kaldırmıştır. Lepton ve anti leptonların evrenin geri kalan kütlesine egemen olmasını sağlamıştır. Büyük patlamadan yaklaşık 10 saniye sonra evrenin sıcaklığı yeni lepton ve anti lepton çiftlerinin birbirini yok edemeyeceği noktaya kadar düşmüştür. Geriye küçük lepton kalıntıları kalmıştır. Proton Dönemi Büyük patlamadan sonra 10 saniye ile 380.000 yılları arasında olmuştur. Lepton ve anti leptonların birbirini yok etmelerinden sonra lepton çağının sonunda evrendeki enerjiye fotonlar tarafından egemen olundu. Bu fotonlar hala sık sık yüktü protonlar, elektronlar ve (son olarak) hala yüklü protonlar, elektronlar ve (sonunda) çekirdeklerle etkileşime girdiler ve bunu önündeki 380.000 yıl boyunca yapmaya devam ettiler. Nükleosentez Dönemi Büyük patlamadan sonra 3 dakika ile 20 dakika arasında olmuştur. Foton çağı sırasında evrenin sıcaklığı atomik çekirdeklerin oluşmaya başladığı noktaya kadar düştü. Protonlar ve nötronlar nükleer füzyon süresince atom çekirdekleri için birleşmeye başladı. Serbest nötronlar protonlarla birleşerek döteryumu oluşturdu. Döteryum hızla füzyona helyum-4 ile füzyona girdi. Evrenin yoğunluğunun ve sıcaklığının nükleosentezin devam edemeyeceği noktaya kadar düşmesiyle nükleosentez sadece 17 boyunca devam etti. Bu zamana kadar bütün nötronlar helyum-4 çekirdeğinin içine katılmıştı. Bu yaklaşık olarak hidrojenin helyum-4 den üç kat daha fazla kütlesinin olmasına sebep oldu. Maddenin Hakimiyeti Büyük patlamadan 70.000 yıl sonra Şu anda, relativistik olmayan maddenin (atomik çekirdekler) ve relativistik radyasyonun (fotonlar) yoğunlukları eşittir. Oluşturulabilen en küçük yapı parçacığı olan Jean'in uzunluğu (yerçekimi çekimi ile basınç etkilerinin birleşimi ile) düşmeye başladı ve serbest akış radyasyonu tarafından silinip yok olmak yerine tedirginliklerin genliği büyümeye başladı. ΛCDM göre, bu aşamada soğuk karanlık madde egemen oldu. Yerçekimini yükseltmek için kozmik enflasyon tarafından küçük homojen olmayan genlik kalıntıları çöktü. Sonuç olarak yoğun bölgeler daha yoğun ve rarefied bölgelerini de daha düşük rarefied haline çevirdi. Ancak günüz karanlık madde teorileri sonuçsuz oldukları için henüz erken safhalar için bir fikir birliği yoktur. Yeniden Birleşme Büyük patlamadan 377.000 yıl sonra küçükresim|upright=1.44 Hidrojen ve helyum atomları evrenin yoğunluğunun düştüğü zaman oluşmaya başlar. Buda büyük patlamadan yaklaşık 377.000 yıl sonrasında olduğu düşünülmektedir. Hidrojen ve helyum iyonizleşmenin (çekirdeğe bağlı elektron bulunmaması yani çekirdeğin pozitif yüklü olması ) başlarındayken evren sakinleşiyordu. Elektronlar iyonlar tarafından yakalıyor ve elektriksel nötr hale geliyorlardı. Bu süreç nispeten hızlıdır (helyum için hidrojenden daha hızlıdır) ve bu süreç yeniden birleşme olarak adlandırılır. Yeniden birleşmenin sonunda evrendeki birçok proton nötr atomlara bağlıdır. Sonuç olarak fotonların serbest yolları etkin bir biçimde sonsuz olur ve fotonlar serbest bir şekilde şeffaf olan evrende gezinebilir (Thomson saçılması). Bu kozmik olay genellikle ayrılma olarak görülür. Evrenin genişlemesi yüzünden evren büyük ölçüde soğuduktan sonra ayrılma sırasında mevcut olan fotonlar kozmik evrendeki mikrodalga arka plandaki fotonlarla aynıdır. Bu zaman zarfında elektron baryon plasmasındaki -baryon akustik salınımları olarak bilinir- mevcut basınç dalgaları maddenin dağılımına gömüldü. Yoğunlaştırıldığı zaman büyük ölçekli objelerin dağılımındaki çok küçük bir önceliğini yükseltir. Sonuç olarak, kozmik mikrodalga arka planı evrenin bu çağının bir resmini verir. Bu resimde enflasyon boyunca üretilen küçük dalgalanmaları (diagrama bakın) içerir ve objelerin dağılımını örnek olarak galaksilerin evrendeki dağılımını zamanla gelişen evrende objelerin boyutlarını ve ölçeklerini belirleyebiliriz. Karanlık Çağlar Ayrışma olmadan önce, evrendeki fotonların çoğunluğu foton-baryon sıvısındaki elektron ve protonlarla etkileşim içindeydi. Sonuç olarak evren "sisli" ya da opaktı. O zamanın ışığı bugünkü teleskoplarla gözlemleyebilmemiz için yeterli değildi. Evrendeki baryonik madde iyonize plazmadan oluşuyordu ve sadece nötr hale geldiği zaman yeniden kombinasyon boyunca serbest elektronları kazanıyordu. Dolayısıyla fotonları bırakmak kozmik mikrodalga arka planı (CMB) yaratıyordu. Fotonlar bırakıldığı zaman ya da ayrıldığı evren şeffaf oluyordu. Bu noktada sadece 21cm dönüş hatlı nötr hidrojen tarafından yayılıyordu. Bugünlerde bu zayıf radyasyonu tespit etmek için gözlemsel bir efor harcanıyor. Evrenin erken dönemlerini çalışmak için prensipte kozmik mikro dalga arka planından daha güçlü bir koz. Karanlık çağlar bugünkü düşüncelerle büyük patlamadan sonraki 150 ile 800 milyon yıl arasında sürdü. 2010'daki Ekim ayında UDfy-38135539 keşfi, ilk gözlenen galaksinin yeniden iyonşalaşma çağında var olduğu bulundu ve o zamanlara bir pencere açma imkânı sağladı. Galaksinin bu periyodun ilk zamanlarında gözlemlendi ve sonuç olarak Leiden University's Richard J. Bouwens ve Garth D. Illingsworth UC Observatories/Lick Observatory. gözlemlenen en uzak galaksi olduğu kaydedildi. Galaksi UDFj-39546284'ün büyük patlamadan 480 milyon sonra ya da kozmik karanlık çağların yarısında bulunduğu ve 13.2 milyar ışık yılı uzaklıkta bulunduğu keşfedildi. Son zamanlarda, UDFy-38135539, EGSY8p7 ve GN-z11galaksileri büyük patmadan sonra 380-550 milyon sonra bulunduğu ve 13.4 milyar ışık yılı uzaklıkta bulunduğu keşfedildi. "Karanlık Çağlar" kozmik arkpalan radyasyonun sıcaklığının 4000 K'den 60 K düştüğü bir dönemdir. Arka plan sıcaklığı 373 K ile 273 K arasındadır. Bu 7 milyon yıl boyunca suyun sıva halde bulunmasına imkân verir. Büyük patlama olduktan 10 ile 17 milyon yıl sonrasına denk gelmektedir. (kırmızıya kayma 137-100) Loeb'e (2014) göre prensipte ilk yaşamın mümkün olması için bu pencerinin olanak sağladığını tahmin ediyor. Bu da "Erken evrende yaşanılabilir çağ" olarak adlandırılıyor. Büyük Ölçekte Yapıların Oluşumu Büyük patlama modelindeki yapı formları büyük yapılardan önce küçük yapıların oluşmasıyla hiyerarşik bir şekilde devam eder. İlk oluşan yapılar kuazarlardır. Kuazarlar parlak, erken aktif galaksiler ve III yıldızların popülasyonu olduğu düşünülmektedir. Bu çağdan önce, evrenin evrilmesi doğrusal kozmolojil pertübasyon teorisi ile anlaşılabilir. Yani bütün yapılar mükemmel homojen olan evrenden küçük sapmalar olarak anlaşılabilir. Bu hesaplamayı sayısal olarak nispeten çalışmak kolaydır. Bu noktada doğrusal olmayan yapıların oluşması ve hesaba dayalı problemlerin zorlaştırır. Örneğin N-body simülasyonu milyar tane parçacık içerir. küçükresim|upright=1.2 Yeniden İyonlaşma Büyük patlamadan sonra 150 milyon yıldan 1 milyar yıla kadar sürmüştür. Kütle-çekimindeki çökmelerden ilk yıldızlar ve kuazarlar oluşurlar. Yaydıkları yoğun radyasyon çevresindeki evreni iyonlaştırır. Bu noktadan itibaren evrenin çoğu kendi halinde plazma olmuştur. Yıldızların Oluşumu küçükresim|upright=1.26 İlk yıldızlar büyük olasılıklar III. popülasyon yıldızlarıdır. Büyük patlamadaki hafif elementlerin (hidrojeni helyum ve lityum) oluşması ve ağır elementler haline dönme sürecinin başlamasıyla ilk yıldızlar oluştu. Ancak henüz III. tür yıldızlar gözlemlenememiştir ve onları anlamak için halen onların oluşumuna ve evrimine bakalarak hesaplama modelleriyle uğraşırız. Şans eseri kozmik mikrodalga arka plan radyasyon gözlemleri yıldızların ciddi şekilde oluştuğu zamanları belirlemek için kullanılır. Bu tarz gözlemleri analizi European Space Agency's Planck telescope tarafından yapılır. BBC News yayınladığına göre 2015 Şubat ayında başlarında büyük patlamadan 560 milyon yıl sonra ilk kuşak yıldızların ortaya çıktıklarına karar verilmiştir. Galaksilerin, Galaksi Takımlarının ve Süper Galaksi Takımların Oluşumu Büyük hacimli maddelerin çökmesiyle galaksi oluşur. II. tür yıldızlar bu sürecin başlarında I. tür yıldızların daha sonra oluşmasıyla oluştu. Evren şimdiki yaşının sadece% 7 iken Johannes Schedler projesi, 12,7 milyar ışık yılı uzakta bir kuazar CFHQS + 3755 1641 belirlemiştir. 11 Temmuz 2007 tarihinde, Mauna Kea, California Pasadena Teknoloji Enstitüsü ve ekibi Richard Ellis 10 metrelik Keck II teleskopu kullanılarak 13.2 milyar uzakta 6 oluşan galaksiler buldu ve bu galaksiler evren 500 milyon yaşında iken oluştular. Son derece erken oluşan bu objelerden sadece 10 tanesi bugün bilinmektedir. Son gözlemler gösteriyor ki yeni veriler daha önce bahsedilenden verilerden (yaşlardan) daha kısa olduğunu söylüyor. 2013 yılında gözlemlenen en uzak galaksi 13.1 milyar yıl uzaktadır. küçükresim|upright=1.52 Hubble Ultra Derin Alan gösteriyorki şu andaki evrenin yaşının sadece % 5 iken küçük galaksiler birleşerek 13 milyar ışık yılı uzaklıktaki büyük bir galaksı oluşturuyordu. Bu yaş tahminin şimdi biraz daha kısa olduğuna inanılmaktadır. Ortaya konulan bilime dayanarak çekirdek kozmik kronolojisi Samanyolu Galaktik ince diskinin aşağı 8.8±1.7 milyar yıl önce oluşmuştur. Kütleçekimi atraksiyonu galaksileri birbirine doğru grup kümeleri oluşturmak için çeker. Güneş Sistemimizin Oluşumu Büyük patlamadan sonra 9 milyar ile 20 milyar yıl arasında.'' Güneş Sistemi yaklaşık 4.6 milyar yıl önce ya da büyük patlamadan 9 milyar sonra oluşmaya başladı. Moleküler bulutun bir parçası hidrojenlerin çoğu ve diğer elementlerin izleri merkezde büyük bir küre olacak şekilde çökmeye başladı. Bu küre güneştir. Aynı zamanda kürenin çevresinde de çökmeler oluyordu. Daha sonra çevredeki bu yığılmadan gezegenler, asteroitler ve kuyruklu yıldızlar oluşacaktı. Güneş son nesil yıldızlardan biridir ve güneş sistemi daha önceki yıldız nesillerinden oluşan maddelerle birleşir. Büyük patlama yaklaşık olarak 13,799 ± 0.021 milyar yıl önce meydana gelmiştir. Evrenin genişlemesi hızlandığı gibi göründüğü için, evrenin büyük ölçekli yapıları hiç olmadığı kadar evren içinde büyüdüler. Mevcut hızlandırılmış genişleme ufka giren herhangi enflasyona ait olan yapıları önler ve yeni kütleçekimine bağlı yapıların oluşmasını önler. Güneş bir dizi ana yıldızdır. Güneşin gelecek evrimleri bazı belirginliklere bakarak tahmin edileblir. Bir miyar yıl veya daha fazla bir zaman ölçeği üzerinde sabit değildir. Dünyanın şu andaki biyosferi bir milyar yıl içinde kaybolur. Güneşin ısısı kademeli olarak artarken bir noktada dünya üzerindeki sıvı su ve hayat bitecektir. Dünyanın manyetik alanı, eksenel eğim ve atmosver uzun vadeli değişimlerin konusudur. Güneş sisteminin kendisi bir milyon ve bir milyar üstü zamanlarda kaotiktir. Sonunda bugünden 5.4 miyar yıl sonra , güneşin çekirdeği etrafındaki kabuk içinde helyum füzyonunu başlatmak için yeteri kadar ısınmış olur. Bu güneşin dış katmanın büyük ölçüde genişlemesine sebep olacaktır ve güneş kendisinin kırmızı cüce olarak adlandırılacağı döneme girecektir. 7.5 milyar yıl içinde güneşin yarıçapı bugünkünden 1.2AU(256) defa genişleyecektir. 2008'de güneşin geçerli boyutu ve dünya ile güneş arasındaki gel-git etkileşimi duyuruldu. Aslında dünya daha düşük bir yörüngeye geri çekilecektir ve güneş tarafından yutulacaktır. Güneş kütlesinin %38'ini kaybetmesine rağmen güneş daha fazla genişlemeden önce dünya güneşe katılmış olacaktır. Güneş hayatını milyarlarca yıl sürdürüp birkaç aşama daha geçirdikten sonra sonunda uzun ömürlü bir beyaz cüce olacaktır. Neticede milyarlarca yıl sonra, güneş ışığını kaybedip siyah cüce olacaktır. Evrenin Nihai Kaderi Evrenin olası uzun vadeli evrim için birkaç rakip senaryo vardır. Bunlardan bazıları kozmolojik sabit, proton çürüme olasılığı ve doğa yasalarının ötesinde Standart Model gibi sabit değerleri vardır. Büyük Donma: 10 milyar yıl Ölüm ısısı: süresiz devam eden metrik genişleme sonunda, evrendeki enerji yoğunluğu 10 yıllık tahmini süresine kadar düşmeye devam edecektir. Bu süreden sonra termodinamik denge noktasına varacak ve bundan sonra yapım mümkün olmayacaktır. Bu olay sadece aşırı uzun vadede gerçekleşecektir. Çünkü ilk olarak tüm maddeler kara delik içine çekilir. Kara delikler Hawking ışımasıyla oldukça yavaş şekilde buharlaşırlar. Bu senaryodaki evren için yıldız oluşumu sona erdiğinde 10 yıl sonra ya da daha sonra evrendeki yaşam desteği de ortadan kalkacaktır. Bazı büyük birleşmiş teorilerde proton çürümesi en az 10 yıl yıldızlar arası gaz olarak kalır ve yıldızlara ait kalıntılarda lepton ve fotonlara çevrilecektir. ( örnek olarak pozitron ve elektron) Bazı pozitron ve electronlar yeniden birleşerek fotonlara dönüşür. Bu durumda evren yüksel entropi durumuna ve düşük enerji salımına ulaşmıştır. Evrensel ölüm ısısı teorisi William Thomson'ın (Lord Kelvin) 1850'lerdeki fikirlerinden kaynaklanır. William Thomson doğadaki menanik enerjide ısı kaybı teorisinden çıkarım yapmış ve tahmin etmiştir. Termodinamiğin ilk iki yasasını somutlaştırarak evrensel hale getirmiştir. Büyük Çıtırtı: 100+ milyar yıl yeterince büyük değerler için evrenin karanlık enerji kapsamı, evrenin genişleme oranı büyümeye limitsiz olarak devam ederse Kütleçekimsel zorunlu sistemler için örneğin galaksi kümeleri, galaksiler ve güneş sistemi paramparça ederler. Neticede genişleme o kadar hızlı olur ki elektromanyetik kuvvet atomları ve molekülleri bir arada tutamaz. Son olarak, atomik çekirdekler bile paramparça olur ve evren bildiğimiz kadarıyla kütleçekimsel tekillik yüzünden sıra dışı bir biçimde son bulur. Büyük Sökülme: 200+ milyar yıl Büyük Çıtırtı senaryonun tersi olan bu senaryo, Evrenin metrik genişlemesi bir noktada tersine dönecek ve evren sıcak ve yoğun durumuna doğru geri gidecektir. Büyük çöküş salınan evreni kasdetmemesine rağmen, bu senaryo için salınan evren elemente ihtiyaç duyar. Örneğin periyodik model. Güncel gözlemler bu modelin pek doğru olmadığını söyler ve genişlemenin devam edeceğini hatta hızlanacağını doğrular. Yarıkararlı Vakum Olayı Kozmoloji geleneksel olarak sabit ya da en azından yarı kararlı evren olduğunu varsayar ama kuantum teorisindeki yanlış vakum olasılığı uzayın herhangi bir noktasında evrenin kendiliğinden daha düşük seviyedeki enerji durumuna yani daha stabil duruma ya da "gerçek vakum" çökebileceğini ima eder. Gerçek vakum ise dışarı doğru ışık hızıyla genişler. Kaynakça Dış bağlantılar PBS Online (2000). From the Big Bang to the End of the Universe - The Mysteries of Deep Space Timeline. Retrieved March 24, 2005. Schulman, Eric (1997). The History of the Universe in 200 Words or Less. Retrieved March 24, 2005. Space Telescope Science Institute Office of Public Outreach (2005). Home of the Hubble Space Telescope. Retrieved March 24, 2005. Fermilab graphics (see "Energy time line from the Big Bang to the present" and "History of the Universe Poster") Exploring Time from Planck time to the lifespan of the universe Astronomers' first detailed hint of what was going on less than a trillionth of a second after time began The Universe Adventure Kategori:Fiziksel kozmoloji Kronoloji Kategori:Kronolojiler
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri