Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Cauchy-Riemann denklemleri

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir. Bir gerçel değerli fonksiyon çifti u(x,y) ve v(x,y) için yazılan Cauchy-Riemann denklemleri aşağıdaki gibidir: ve Genelde u ve v çifti, karmaşık değerli bir f(x + iy) = u(x,y) + iv(x,y) fonksiyonunun gerçel ve sanal kısımları olarak alınır. u ve v, C 'nin açık bir kümesinde sürekli şekilde türevlenebilir bir fonksiyon olsun. O zaman, f=u+iv ancak ve ancak u ve v Cauchy-Riemann denklemlerini ((1a)'yı ve (1b)'yi) sağlarsa, holomorftur. Yorumu ve formülasyonu Açıkorur gönderimler Cauchy-Riemann denklemleri çeşitli yollarla genelde tekrar formüle edilirler. Birincisi, (2) karmaşık formunda yazılabilirler. Bu formda, denklemler yapısal olarak Jakoben matrisinin, ve olacak şekilde, formunda olmasına karşılık gelir. Bu formdaki bir matris bir karmaşık sayının matris temsilidir. Geometrik olarak, böyle bir matris her zaman homotetisi olan bir rotasyonun bileşkesidir ve bilhassa açıları korur. Sonuç olarak, türevi sıfırdan farklı, Cauchy-Riemann denklemlerini sağlayan bir fonksiyon düzlemdeki eğriler arasındaki açıyı korur. Yani, Cauchy-Riemann denklemleri bir fonksiyonun açıkorur gönderim olması için olan koşullardır. Karmaşık eşleniğin bağımsız olması Denklemler bazen tek bir denklem olarak yazılır: (3) Burada, türev operatörü olarak tanımlanmıştır. Bu formda, Cauch-Riemann denklemleri "f, değişkeninden bağımsızdır" olarak yorumlanabilir. Karmaşık türevlilik Cauchy-Riemann denklemleri bir fonksiyonun karmaşık türevli (veya holomorf) olması için gerekli ve yeterli bir koşuldur (Ahlofors 1953, §1.2 ). Daha ayrıntılı bir şekilde, z ∈ C karmaşık sayısının fonksiyonu olsun. O zaman, f 'nin z noktasında karmaşık türevi eğer limit varsa olarak tanımlanır. Eğer bu limit varsa, limit reel eksen veya sanal eksen boyunca h → 0 alınarak hesaplanabilir ve her iki durumda da aynı sonucu vermelidir. Reel eksen boyunca yaklaşılırsa elde edilir. Diğer taraftan sanal eksen boyunca yaklaşılırsa elde edilir. İki eksen boyunca alınan türevlerin eşitliği ifadesini verecektir. Fark edilirse bu, z noktasındaki (2) nolu Cauchy-Riemann denklemidir. Tersine, f:C → C, R 'de türevli olarak algılanırsa, o zaman f ancak ve ancak Cauchy-Riemann denklemleri sağlanırsa karmaşık türevlidir. Diğer temsiller Cauchy-Riemann denklemlerinin diğer temsilleri diğer koordinat sistemlerinde de ortaya çıkmaktadır. Sürekli şekilde türevlenebilir bir u ve v fonksiyon çifti için (1a) ve (1b) sağlanıyorsa, o zaman 'nin birim dik ve pozitif yönlü olduğu herhangi (n(x,y), s(x,y)) koordinatı için de eşitlikleri sağlanır. Sonuç olarak, özellikle, z=re olarak verilen kutupsal koordinatlar sisteminde, denklemler halini alır. f için bu iki denklem birleştirildiğinde elde edilir. Homojen olmayan denklemler Homojen olmayan Cauchy-Riemann denklemleri, R 'nin açık bir altkümesinde verilmiş α(x,y) ve β(x,y) için, bilinmeyen iki gerçel değişkenli bir u(x,y) ve v(x,y) fonksiyon çiftinin iki denkleminden oluşur: Bu denklemler genellikle bir denklemde toplanırlar (f=u+iv ve φ=(α+iβ)/2) Eğer φ, C ise, o zaman herhangi sınırlı bir D bölgesinin kapanışında φ sürekli olduğu sürece, homojen olmayan denklem D 'de açık olarak çözülebilir. Aslında Cauchy integral formülü kullanılarak her ζ ∈ D için ifadesi elde edilir. Genelleştirmeler Goursat teoremi ve genelleştirmeleri f = u+iv, f : R → R fonksiyonu olarak karmaşık değerli, türevlenebilir bir fonksiyon olsun. O zaman Goursat teoremi, f 'nin açık karmaşık bir Ω bölgesinde ancak ve ancak fonksiyon Cauchy-Riemann denklemlerini sağlarsa analitik olacağını ifade eder (Rudin 1966, Teorem 11.2). Özelde, f 'nin sürekli türevliliği varsayılmak zorunda değildir (Dieudonné 1969, §9.10, Al. 1). Goursat teoremi 'nin varsayımları önemli bir ölçüde zayıflatılabilir. f=u+iv açık bir Ω kümesinde sürekliyse ve f 'nin Ω'da x ve y 'ye göre kısmi türevleri varsa, o halde f holomorftur (ve bu yüzden analitiktir). Bu sonuç Looman–Menchoff teoremi olarak bilinir. f 'nin Ω üzerinde Cauchy-Riemann denklemlerini sağlaması varsayımı çok önemlidir. Bir noktada Cauchy-Riemann denklemlerini sağlayan ancak analitik olmayan bir fonksiyon inşa etmek mümkündür (mesela f(z) = z/|z|). Benzer bir şekilde, aşağıdaki örneğin de gösterdiği gibi, Cauchy-Riemann denklemlerinin yanında (süreklilik gibi) bazı ek varsayımlara da ihtiyaç vardır (örnek Looman 1923, sf. 107'dedir.): Cauchy-Riemann denklemlerini sağlar ancak z=0 noktasında sürekli değildir. Yine de, bir fonksiyon açık bir küme üzerinde Cauchy-Riemann denklemlerini zayıf bir anlamda sağlıyorsa, o zaman fonksiyon analitiktir. Daha kesin bir anlamda (Gray Morris 1978, Teorem 9), f(z), Ω ⊂ C açık bölgesinde yerel olarak integrallenebiliyorsa ve zayıf bir şekilde Cauchy-Riemann denklemlerini sağlıyorsa, o zaman f, Ω içindeki analitik bir fonksiyonla hemen hemen her yerde aynıdır. Çok değişkenler Cauchy-Riemann denklemlerinin çok karmaşık değişkenlere uygun genelleştirmeleri de vardır. Kısmi diferansiyel denklemleri önemli bir artık belirtilmiş sistemlerini oluştururlar. Çoğu zaman formüle edildiği gibi d-bar operatörü holomorf fonksiyonları imha eder. Bu doğrudan alınarak şu genelleştirmeyi yapar: Kaynakça Lars Ahlfors, Complex analysis, McGraw Hill, 1953, 3. baskı, 0-07-000657-1. J. d'Alembert, Essai d'une nouvelle théorie de la résistance des fluides, Paris, 1752 A.L. Cauchy, Mémoire sur les intégrales définies, Oeuvres complètes Ser. 1, C.1, Paris, 1814, sf. 319–506. H. Chanson, Le Potentiel de Vitesse pour les Ecoulements de Fluides Réels: la Contribution de Joseph-Louis Lagrange , Journal La Houille Blanche, C. 5, sf. 127-131, 0018-6368. Jean Alexander Dieudonné, Foundations of modern analysis, Academic Press, 1969. L. Euler, Nova Acta Acad. Sci. Petrop., C.10, 1797, sf.3–19 J. D. Gray & S. A. Morris, When is a Function that Satisfies the Cauchy-Riemann Equations Analytic?, The American Mathematical Monthly, C. 85, sayı 4, 1978, sf. 246-256 H. Looman, Über die Cauchy-Riemannschen Differeitalgleichungen, Göttinger Nach., 1923, sf. 97-108. George Pólya & Gabor Szegö, Problems and theorems in analysis I, Springer,1978,3-540-63640-4. Bernhard Riemann, Grundlagen für eine allgemeine Theorie der Funktionen einer veränderlichen komplexen Grösse, (editör: H. Weber, Riemann's gesammelte math, Werke, Dover, 1953, sf.3–48),1851. Walter Rudin, Real and complex analysis, McGraw Hill,1987, 3. baskı, 0-07-054234-1. E.D. Solomentsev, Cauchy–Riemann conditions, Springer, 2001. Dış bağlantılar Cauchy-Riemann Denklemleri Modülü, John H. Mathews tarafından Kategori:Kısmi diferansiyel denklemler Kategori:Karmaşık analiz Kategori:Harmonik fonksiyonlar Kategori:Bernhard Riemann
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri