Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Çizgi integrali

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
Matematikte bir çizgi integrali (bazen yol integrali, eğri integrali veya eğrisel integral de denilir), integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır. İntegrali alınan fonksiyon (integrand), skaler alan veya vektör alanı olabilir. Çizgi integralinin değeri, alanın eğri üzerinde bir skaler fonksiyonla ağırlıklaştırılmış (genelde bu ağırlık yay uzunluğudur veya bir vektör alanı için, vektör alanının diferansiyel bir eğriyle skaler çarpımıdır) olarak aldığı tüm değerlerin toplamının değeridir. Bu ağırlık, çizgi integralini aralıklar üzerinde tanımlanan daha basit integrallerden ayırır. Fizikteki çoğu basit formül (mesela, ), çizgi integrali bağlamında doğal sürekli analoglara sahiptir . Çizgi integrali yandaki resimdeki gibi, bir elektrik veya yerçekimsel alanda hareket eden bir nesnenin üzerinde yapılan işi bulur. right right Vektör hesabı Niteliksel bağlamda, çizgi integrali bir eğri boyunca verilmiş olan bir alanın toplam etkisinin ölçümü olarak düşünülebilir. Bir skaler alanın çizgi integrali Bir f : U ⊆ R R skaler alanı için, bir C ⊂ U boyuncaki çizgi integrali şeklinde tanımlanır. Burada r: [a, b] C ise r(a) ve r(b) C 'nin son noktaları olacak şekilde, C 'nin herhangi bir birebir örten parametrizasyonudur. f fonksiyonu integrand, C eğrisi integralin tanım kümesi ve ds sembolü ise yay uzunluğudur. Skaler alanların çizgi integralleri seçilmiş r parametrizasyonuna bağlı değildir. Bir vektör alanının çizgi integrali Bir F : U ⊆ R R vektör alanı için, C ⊂ U boyunca, r yönündeki çizgi integrali şeklinde tanımlanır. Burada nokta çarpımdır ve r: [a, b] C ise, r(a) ve r(b) C 'nin sonnoktaları olacak şekilde, C eğrisinin birebir örten bir parametrizasyonudur. Bir skaler alanın çizgi integrali bu yüzden vektörlerin doğruya her zaman teğet olduğu bir vektör alanının çizgi integralidir. Vektör alanlarının çizgi integralleri, mutlak değer içindeki r parametrizasyonuna bağlı değildir; ancak eğrinin yönüne bağlıdır. Dha ayrıntılı bir şekilde, parametrizasyonun yönündeki tersi bir değişim çizgi integralinin işaretini değiştirir. Yol bağımsızlığı Bir F vektör alanı, bir G skaler alanının gradyanıysa; yani ise, o zaman G ve r(t) 'nin bileşkesinin türevi olur ki bu da F 'nin r(t) üzerindeki çizgi integralinin integrandıdır. O zaman, verilen bir C yolu için olmaktadır. Yazıyla ifade edilirse, F 'nin C üzerindeki integrali sadece G nin r(b) ve r(a) noktalarındaki değerlerine bağlıdır ve bu yüzden aradaki yoldan bağımsızdır. Bu sebeple, bir skaler alanın gradyanı olan bir vektör alanının çizgi integrali yoldan bağımsız olarak adlandırılır. Uygulamalar Çizgi integralinin fizikte birçok uygulaması vardır. Mesela, bir F vektör alanı olarak temsil edilen bir kuvvet alanı içinde yer alan bir C eğrisi üzerinde hareket etmekte olan bir parçacığın üzerinde yapılan iş F 'nin C üzerindeki çizgi integralidir. Karmaşık çizgi integrali Çizgi integrali karmaşık analizde temel bir araçtır. U, C'nin açık bir kümesi olsun, : [a, b] U doğrultulabilir eğri ve f : U C bir fonksiyon olsun. O zaman çizgi integrali, [a, b] aralığını a = t < t < ... < t = b olacak şekilde daha küçük aralıklara ayırılarak ve ifadesi göz önüne alınarak düşünülebilir. O zaman, alt aralıkların uzunlukları sıfıra gittikçe, integral bu toplamın limiti olur. Eğer sürekli türevlenebilir bir eğriyse, çizgi integrali gerçel değişkenli bir fonksiyonun integrali olarak değerlendirilebilir: kapalı bir eğri olduğu zaman, yani, başlangıç ve bitiş noktaları aynıysa, gösterimi, f 'nin boyuncaki çizgi integrali için kullanılır. Karmaşık fonksiyonların çizgi integralleri çeşitli teknikler kullanılarak değerlendirilebilir: İntegral, gerçel ve karmaşık kısımlarına bölünüp problem iki tane gerçel integralin bulunması problemine düşürülebilir, Cauchy integral formülü diğer durumlarda kullanılabilir. Eğer çizgi integralinin alındığı eğri, fonksiyonun analitik olduğu ve tekillik içermediği bir bölgede kapalı bir eğriyse, o zaman integralin değeri sadece 0 olur ki bu da Cauchy integral teoremi'nin bir sonucudur. Kalıntı teoremi sebebiyle, gerçel değişkene sahip gerçel değerli fonksiyonların integralini bulmak için çoğu zaman karmaşık düzlemde kontür integralleri kullanılır. (örnek için kalıntı teoremine bakınız.) Örnek f(z)=1/z fonksiyonunu ele alalım. C kontürü, e, şeklinde parametrize edilebilen, 0 etrafındaki birim çember olsun. Değişken değiştirmeyle ifadesini buluruz. Burada, herhangi bir karmaşık z sayısının r, z 'nin modülüsü (mutlak değeri) olacak şekilde re olarak yazılabileceğini kullandık. Birim çember üzerinde r = 1 olduğu için geriye kalan tek değişken t ile gösterilen açı değişkenidir. Cevap, aynı zamanda Cauchy integral formülü ile de doğrulanabilir. Bir vektör alanının integrali ile karmaşık çizgi integrali arasındaki ilişki Karmaşık sayıları 2 boyutlu vektörler olarak alırsak, 2 boyutlu bir vektör alanının çizgi integrali, karşılık gelen karmaşık değerli karmaşık fonksiyonun eşleniğinin çizgi integralinin gerçel kısmına denk gelir. Daha ayrıntılı bir şekilde, ve ise, o zaman sağ taraftaki her iki integral de var olduğu ve C 'nin parametrizasyonu ile aynı yönde olduğu sürece eşitliği elde edilir. Cauchy-Riemann denklemleri sebebiyle, bir holomorf fonksiyonun eşleniğine karşılık gelen bir vektör alanının körlü sıfırdır. Bu da her iki tip integralin de sıfır olduğu Stokes teoremi ile ilişkilidir. Ayrıca, çizgi integrali değişken değiştirme kullanılarak da değerlendirilebilir. Ayrıca bakınız Diverjans teoremi Green teoremi Stokes teoremi Yüzey integrali Hacim integrali Dış bağlantılar PlanetMath'de yol integrali Yol integralinin resimsel bir anlatımı Kontür İntegralleri Modülü, John H. Mathews tarafından Kategori:Karmaşık analiz Kategori:Vektör hesabı Kategori:İntegral Kategori:Çok değişkenli hesap
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri