Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

De Gua teoremi

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
küçükresim| Adını Fransız matematikçi Jean Paul de Gua de Malves'den alan De Gua teoremi, Pisagor teoreminin üç boyutlu bir analojisidir. Açıklama Bir dört yüzlünün dik açılı bir köşesi varsa (bir küpün köşesi gibi), o zaman dik köşenin karşısındaki yüzün alanının karesi, diğer üç yüzün alanlarının karelerinin toplamına eşittir. Genellemeler Pisagor teoremi ve de Gua teoremi dik köşe açılı n-simpleks (n = 2, 3) hakkındaki genel bir teoremin özel durumlardır. Bu da Donald R. Conant ve William A. Beyer'in daha genel bir teoreminin özel bir durumudur ve aşağıdaki gibi ifade edilebilir. U, 'nin ( olmak üzere) k-boyutlu afin alt uzayının ölçülebilir bir alt kümesi olsun. Tam olarak k elemanlı herhangi bir alt kümesi için, U'nun doğrusal açıklığı üzerine ortogonal izdüşümü olsun, burada ve için standart taban (doğal taban)dır. Sonra, burada U'nun k-boyutlu hacmi ve toplam k elementli tüm alt kümeler üzerindedir. De Gua'nın teoremi ve dik köşe açılı n-simpliklere genellemesi (yukarıda), k = n-1 ve U’nun koordinat eksenlerinde köşeleri olan 'de bir (n−1)-simpleks olduğu özel duruma karşılık gelir. Örneğin, n = 3, k = 2 ve U içinde A, B ve C köşeleri sırasıyla , ve eksenlerinde yer alan üçgenidir. 'ün tam olarak 2 elemanlı alt kümeleri , , ve 'dir. Tanım olarak, 'nin -düzleminde ortogonal izdüşümüdür, yani köşeleri O, B ve C olan üçgenidir, burada O ün orjinidir. Benzer şekilde, ve olup, Conant-Beyer teoremi aşağıdaki gibi ifade edilir; bu ise de Gua teoremidir. De Gua teoreminin dik köşe açılı n-simplekslere genelleştirilmesi de Cayley-Menger determinat formülünün özel bir durumu olarak elde edilebilir. Tarihçe Jean Paul de Gua de Malves (1713-1785), bu teoremi 1783'te yayınladı, ancak aynı zamanda teoremin biraz daha genel bir versiyonu başka bir Fransız matematikçi Charles de Tinseau d'Amondans (1746-1818) tarafından da yayınlandı. Ancak teorem, Johann Faulhaber (1580-1635) ve René Descartes (1596-1650) tarafından çok daha önce biliniyordu. Teoremin İspatı İspat 1 Bir köşesi dik açılı olan bir dört yüzlü verilsin. Dik açılı köşeye dokunan üç yüzün alanları ve dik açılı köşenin karşısındaki "hipotenüs yüzü" alanı şeklinde etiketlensin, De Gua teoremi aşağıdaki eşitliği ifade etmektedir: . Bu ispatta Heron formülünü kullanacağız. Heron formülü, bir üçgenin alanını kenar uzunlukları cinsinden verir. Kenarları ve yarı çevresi olan bir üçgenin alanı aşağıdaki şekilde bulunur: . De Gua teoremi bağlamında, dört yüzlünün altı bacağı, ve şeklinde etiketlensin. Burada , dik açılı köşeden çıkan bacaklar ve ise hipotenüs yüzünün üç kenarıdır. Dik açılı köşeye temas eden üç yüzün alanları sırasıyla; 'dir. Heron formülünü kullanarak hipotenüs yüzünün alanı aşağıdaki şekilde hesaplanır: . Bunu bazı cebirsel işlemlerle aşağıdaki şekilde genişletebiliriz. . Şimdi, Pisagor teoremini kullanarak elde edebileceğimiz uzunluklar, olarak hesaplanır. Ve böylece terimleri yerine koyup sadeleştirerek aşağıdaki ifadeyi elde ederiz: ve teorem kanıtlanmış olur. İspat 2 OA, OB, OC kenarlarının ilgili uzunlukları a, b, c olsun. Dört yüzlü tarafından kesilen şeklin iç hacmi, = = = aynı zamanda h, ABC yüzü ile ilişkili yüksekliği göstermek üzere 'ye eşittir. vektörü gibi ABC düzlemine normaldir, bu yükseklik ile gösterilir. Dolayısıyla, hacimleri eşitleyerek: . Ve basitleştirerek 'ye yani istenen formüle ulaşılır. Notlar Kaynakça Sergio A. Alvarez: Note on an n-dimensional Pythagorean theorem , Carnegie Mellon University. De Gua's Theorem, Pythagorean theorem in 3-D - Graphical illustration and related properties of the tetrahedron. Konuyla ilgili yayınlar Proof of de Gua's theorem and of generalizations to arbitrary tetrahedra and to pyramids. Application of de Gua's theorem for proving a special case of Heron's formula. Rasul A. Khan, (2013), The cosine rule in three dimensions and de Gua's theorem, The Mathematical Gazette, Volume 97, Issue 539, ss. 281-284, https://doi.org/10.1017/S0025557200005945, Charles Frohman, (2010), The Full Pythagorean Theorem, s. 3, Makale Magdalini Kokkaliari, (2013), The Pythagoras' Theorem: Is the Methuselah theorem still alive?'', Makale Kategori:Öklid geometrisi Kategori:Geometri teoremleri Kategori:Öklid geometrisi teoremleri
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri