Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Elektrikli otomobil

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
[[Dosya:Mitsubishi i MiEV background blurred.jpg|küçükresim|sağ|Mitsubishi i-MiEV'nin satışı Nisan 2010'da Japonya'da başladı.]] Elektrikli otomobil, elektrik enerjisi ile çalışan otomobillere verilen isimdir. Elektrikli otomobillerin, otomotiv endüstrisinde önemli bir etkisi oluyor. Bu model arabalar yakıt tasarrufu yanında şehir kirliliğini ve karbon emisyonunu azaltmaktadır. Karbondioksit emisyonunun azalma derecesi elektrik üretimine bağlı olup %50'lik bir azalma beklenmektedir. Karbondioksit emisyonunun azalma derecesi elektrik üretimine bağlı olup %50'lik bir azalma beklenmektedir. Enerji toplamaları için şarj istasyonu kurulur. Elektrikli otomobil bir veya daha fazla elektrik motoru kullanarak, bataryalardan ve diğer enerji depolama cihazlarında depoladığı elektriği kullanarak sürülen otomobildir. Elektrik motorları ani tork verir, güçlü ve dengeli hızlanma sağlar. Elektrikli otomobiller 19. yüzyılın sonlarında ve 20.yy’ın başlarında oldukça revaçtaydı, fakat içten yanmalı motor teknolojisindeki ilerlemeler ve petrol kullanan araçların ucuz olarak toplu üretimi elektrikli araçların sonunu getirdi. 1970 ve 1980’lerdeki enerji krizleri elektrikli otomobillere kısa süreli bir ilgi oluşturdu, fakat günümüzdeki gibi büyük kitlesel bir pazara ulaşılamamıştı. 2000’li yılların ortalarından beri batarya ve güç yönetimi teknolojilerindeki ilerlemeler, değişken petrol fiyatlarının sebep olduğu endişeler ve sera gazı azaltma gereksinimi elektrikli otomobilleri yeniden gündeme getirdi. 2021 itibarıyla dünyada en çok satan elektrikli araç Volkswagen ID.3'tür. Elektrikli otomobiller içten yanmalı motorlu araçlarla karşılaştırıldığında bazı avantajlara sahiptir; bunlar yerel hava kirliliğini azaltır, petrol ve petrol ithali yapılan ülkelere bağımlılığı azaltır. Ayrıca birçok ülke için yüksek petrol fiyatları ülkelerin ödemeler dengeleri üzerine ters bir etkiye sahiptir; onların ekonomik gelişmelerini engellemektedir. Potansiyel faydalarına rağmen, elektrikli otomobillerin geniş ölçüde benimsenmemesinin bazı sebepleri engel ve sınırlamalar ile karşılaşmalarıdır. 2010 itibarıyla elektrikli arabalar lityum-iyon bataryaların ek masrafları sebebiyle, sıradan bir içten yanmalı motorlu araca ve hibrit elektrikli araçlara göre önemli ölçüde daha pahalıdır. Bununla birlikte batarya fiyatları toplu üretim ile azalmaktadır ve daha da azalması beklenmektedir. Elektrikli arabaların yaygınlaşmasını engelleyen diğer faktörler; özel veya kamuya ait bir girişim olarak şarj istasyonlarının eksikliği ve kısıtlı menzil sebebiyle sürücülerin hedeflerine varamadan bataryalarının tükenip yolda kalacakları şeklindeki endişeleridir. Bazı hükûmetler var olan engelleri aşmak için politikalar geliştirmekte, ekonomik teşvik paketleri sunmaktalar. Böylece elektrikli otomobillerin satışını artırmak için, elektrikli araç ve batarya teknolojisindeki gelişmeleri desteklemektedirler. Çeşitli ulusal ve yerel hükûmetler vergileri azaltarak, çeşitli destekler sağlayarak elektrikli arabaların ve diğer şarj edilen hibrit araçların satın alma fiyatlarını azaltmaktadır. Etimoloji Elektrikli otomobiller elektrikli araçların (EVs) bir çeşididir; elektrikli araç terimi tahrik yani ileri itiş için elektrik motoru kullanan herhangi bir aracı ifade eder, elektrikli bir otomobil ise genellikle elektrikli karayolu taşıtlarını ifade etmektedir. Elektrikli otomobillerin güç kaynağı sadece yerleşik bir batarya olmadığı durumlarda, elektrik motorları beslendikleri diğer kaynaklara göre isimlendirilirler; güneş ışığını kaynak olarak kullanan güneş otomobilleri ve dizel jeneratörlü elektrikli otomobiller gibi, bu arabalar hibrit araçların bir türüdür. Nitekim gücü yerleşik bir bataryadan alan elektrikli otomobiller bataryalı elektrikli araçların (BEVs) bir türüdür. Genelde elektrikli otomobiller bataryalı elektrikli araçları (BEVs) belirtmektedir. Tarihçe küçükresim|Alman Elektrikli Arabası, 1904 Elektrikli otomobiller 19.yy’ın ortalarında ve 20.yy’ın başlarında oldukça popülerdi, elektrikli otomobiller konforu ve kullanım kolaylığı ile petrollü otomobillere göre daha üstündü. İçten yanmalı motor teknolojisindeki ilerlemeler, özellikle elektrik starter’i bu üstünlüğü tartışmalı hale getirdi. Petrollü otomobillerin geniş çeşitliliği, daha hızlı bir şekilde enerji yüklenebilmesi, gelişen petrol altyapısı, Ford Motor şirketi gibi şirketlerin seri petrollü araç üretimi ve bu seri üretim sonucu petrollü otomobillerin elektrikli otomobiller ile aynı fiyata gelmesine hatta daha ucuz olmasına sebep oldu. Bu gelişmeler 1930’larda elektrikli otomobillerin ABD piyasasından silinmesine sebep oldu. Bununla birlikte, son yıllarda, petrollü otomobillerin çevresel etkileri hakkındaki endişeler, yüksek benzin fiyatları, batarya teknolojisindeki gelişmeler ve petrol fiyatının yükselme ihtimali elektrikli otomobillere yeniden bir ilgi doğmasına yol açtı. 1990’lardaki başarısız bir ortaya çıkma girişiminden sonra bu yeni elektrikli otomobiller daha çevre dostu oldu ve ilk satın alma masraflarına rağmen çalıştırılması ve kullanımı daha ucuzdur. küçükresim|sağ|Detroit Elektrik arabası şarj olurken 1880-1900: Erken Tarihi Türkiye'de ilk elektrikli otomobil II. Abdülhamid tarafından İngiltere'de Messrs Immisch & Co şirketine 1888 yılında sipariş edildi. Şirketin mühendisleri Magnus Volk ve Moritz Immisch'in özel olarak hazırladıkları bu otomobil ön kısmında tek bir büyük teker yerine birbirine yakın iki küçük tekere sahipti, Immisch tarafından patenti alınan 20 Amper 48 Volt 1 beygirlik motoru vardı. Abdülhamit bu otomobilden çok memnun kalmıştı ve bu iki mühendisi ödüllendirmişti, bu sayede mühendisler uluslararası bir üne kavuşmuşlardı. Sultan için hazırlanan bu otomobil o zamanın teknik dergilerinde de görülebilmektedir. İçten yanmalı motorların üstünlüğü ele geçirmesinden önce, elektrikli otomobiller birçok hız ve mesafe rekoruna sahiptiler. Bu rekorlar arasında en dikkat çekici olan Camille Jenatzy tarafından 29 Nisan 1899’da kendisine ait olan roket tipli aracı Jamais Contente ile 100km/saat rekorunun 106km/saat’lik bir hızla kırılmasıdır. 1920’lerden önce, elektrikli otomobiller, petrol yakıtlı otomobiller ile şehir içinde kullanım kalitesi olarak rekabet etmekteydi. 1896 yılına kadar süre gelen şarj etme altyapısındaki eksikliği aşmak için getirilen çözümlerden biri değiştirilebilir batarya hizmeti Hartfor Electric Light Company tarafından elektrikli kamyonlar için ilk defa uygulamaya konuldu. Araç sahibi aracını bataryasız olarak General Electric Şirketinden satın alıyordu ve elektriği de Hartfor Electric’ten değiştirilebilir bataryalar vasıtasıyla satın alıyordu. Araç sahibi değişken bir mil başına şarj ücreti ve kamyon depolama ve bakımını kapsayan aylık bir hizmet ücreti ödüyordu. Hizmet, 1910 ile 1924 yılları arasında 6 milyon milden fazla bir ulaşımı kullanıcılara sunmuştu. 1917’nin başlarında benzer bir hizmeti Chicago’da Milburn Light Electric otomobilleri sahipleri için bataryasız araç satın alma seçenekleri mevcuttu. [[Dosya:EdisonElectricCar1913.jpg|küçükresim|sol|Thomas Edison ve bir Detroit Elektrik arabası,1913.]] 1897’de ABD’deki ilk ticari uygulama olarak elektrikli araçlar New York şehri taksi filosu olarak Filedelfiya Elektrikli taşıma ve vagon şirketi tarafından yapılmıştır. ABD’de elektrikli otomobiller 20.yy başlarında Anthony Electric, Baker, Columbia, Anderson, Fritchie, Studebaker, Riker, Milburn ve diğerleri tarafından üretilmiştir. İçten yanmalı motorlarla karşılaştırıldığında daha yavaş olmasına rağmen, 1900’lerin başlarında bazı avantajlarından dolayı tercih edilmekteydi. Petrollü otomobillerde bulunan sarsıntı, koku ve gürültü gibi olumsuz yönler elektrikli otomobillerde yoktu. Elektrikli otomobillerin petrollü otomobillerde sürme esnasında en büyük problem olan vites değiştirme gibi bir problemi yoktu. Elektrikli otomobiller zenginlerin şehir içi ulaşımda uzun menzilin gerekmeyeceği şekilde bir kullanımda tercih edilmişti. Petrollü otomobillerin bir diğer dezavantajı ise motoru çalıştırmak için elle kurulan bir kola gereksinim duymasıydı, kolun kurulması için fiziksel olarak bir çaba harcamak gerekiyordu. Elektrikli otomobiller bu sebeplerden kadınlar için de kullanım kolaylığı sağlamaktaydı. [[Dosya:Kilowatt.jpg|küçükresim|sağ|The Henney Kilowatt, 1961 yılında üretilen Renault Dauphine'e dayanan elektrikli araba]] 1911’de New York Times, elektrikli otomobilleri petrol yakıtlı otomobillerden daha temiz olması, daha sessiz olması ve daha ekonomik olması sebebiyle ideal olarak kabul etmekteydi. 2010 yılında rapor edilen bu 1911 tarihli habere, Washington Post şöyle bir yorum katmıştır; Thomas Edison’un kafasını karıştıran elektrikli otomobil bataryalarına olan benzer güven eksiklikleri günümüzde de sürmektedir. 1990’lar ve günümüz 1970’lerdeki ve 80’lerdeki enerji krizleri, hidrokarbon(petrol) enerji piyasasındaki dalgalanmalardan bağımsız olması sebebiyle elektrikli otomobillere olan ilgi tekrar yenilendi. 1990’ların başlarında, CARB(California Air Resources Board) daha yakıt verimli, daha az emisyonlu araçlara; asıl amaç olarak sıfır emisyonlu örneğin elektrikli araçlar gibi, araçlara geçişi öngören bir çalışma başlattı. Karşılık olarak, otomobil üreticileri, elektrikli modeller geliştirdiler: CryslerTEVan, Ford Ranger EV pickup truck, GM EV1 ve S10 EV pickup, Honda EV plus hatchback, Nissan lityum-iyon bataryalı Altra EV minivagon ve Toyota RAV4 EV gibi. Bu otomobiller netice olarak ABD otomobil marketinde lağvoldular, ortadan kalktılar. 2000’lerin sonlarında küresel ekonomik durgunluk otomobil üreticilerine aşırılığın sembolü olarak görülen fazla yakıt tüketen spor amaçlı taşıtları(SUVs)azaltarak, küçük arabaları, hibrit arabaları ve elektrikli arabaları yaygınlaştırma üzerine çağrıları artırdı. Kaliforniyalı otomobil üreticisi Tesla Motors 2004 yılında Tesla Roadster üzerinde geliştirmelere başladı, 2008 yılında ilk defa müşteriye sunuldu. Mart 2012 itibarıyla, Tesla en az 31 ülkede 2,250 den fazla Roadster modeli sattı.. Mitsubishi i MiEV Temmuz 2009’da Japonya’da filo müşterileri için piyasaya sürüldü, bireysel müşteriler için Nisan 2010’da satışı başladı. Hong Kong’da bireysel müşteriler için Mayıs 2010’da, Avustralya'da ise kiralama yolu ile Temmuz 2010’da piyasada yerini aldı. Nissan Leaf’in perakende satışı Japonya ve Amerika’da 2010 Aralık ayında, çeşitli Avrupa ülkeleri ve Kanada’da 2011’de başladı. Ocak 2022 itibarıyla, diğer elektrikli otomobiller ve şehir arabaları satın alma için veya kiralama için sunulmaktadır.Bunlardan bazıları: Porsche Taycan,Tesla Model 3,Tesla Model Y,Volkswagen ID.4,Volkswagen ID.3,Renault Zoe,Nissan Leaf,Hyundai Kona,Kia Niro Araç teknolojisi Genel özellikler İçten yanmalı motorlar'ın aksine elektrik motor'unda rölanti hızı vs. yoktur ve geniş hız aralığında yüksek tork sağlar. Bu nedenle elektrikli otomobillerde (elle veya otomatik) şanzıman, debriyaj ve tork dönüştürücü gerekli değildir. Benzer şekilde onarım veya bakım gerektiren birçok bileşen de yoktur. Alternatif akımlı elektrik motorları, çekiş akülerince sağlanan doğru akımı dönüştürmek için güç elektroniği gerektirir. Elektrikli motorlar, benzinli veya dizel motorlardan daha sessizdir, neredeyse titreşimsizdir ve zararlı egzoz gazı yaymaz. Genelde daha az parçadan oluşurlar ve aynı performans için daha küçüktürler, %85-95'lik verimlilikleri ortalama %25' verimli modern bir içten yanmalı motordan daha fazladır. Depolardaki fosil yakıtlara kıyasla akülerin enerji yoğunluğu daha az olduğundan elektrikli arabaların kütlesi geleneksel otomobillerin kütlesinden daha çok, menzilleri ise daha azdır. Günümüzün elektrikli arabaları geri kazanımla fren enerjisini geri kazanırlar. küçükresim|PSA tarafından kullanılan sürücü seti.(2007) küçükresim|Peugeot e208'in motor bölmesi (model yılı 2020) Mekan kullanım kavramı denilen bileşenlerin düzeni de değişti. İçten yanmalı motorlu aracın yapımında, birçok bileşen ana tahrik etrafında düzenlenirken, elektrikli otomobilde bileşenler merkezi olmayan şekilde yerleştirilebilir. Temel bileşenler alan gereksinimleri ve şekilleri bakımından farklıdır: örneğin motor ve soğutucu daha küçüktür, akü sistemi araç kavramına göre araç gövdesinin farklı yerlerine yerleştirilebilir. Bu aynı zamanda avantajlar da sağlar: Soğutucular için daha küçük hava girişleri sayesinde daha akıcı bir ön bölüm mümkündür. Ön tarafın çarpışmaya uygun tasarımı için destekler ve temas plakalarına daha çok yer vardır. Daha az alan gereksinimi aynı zamanda daha büyük direksiyon açısına ve dolayısıyla daha küçük dönüş yarıçapına imkan verir. (Örneğin Škoda Enyaq iV: Sadece 9.3 metre dönüş yarıçaplıdır ve yaklaşık aynı boyuttaki Kodiaq'ınkinden neredeyse üç metre daha az dönüş yarıçaplıdır, hatta bu dönüş yarıçapı küçük bir araba olan Fabia'dan bir metre daha azdır.) Kütle merkezi, zeminin altındaki ağır akü nedeniyle yere daha yakındır; böylece devrilmeye karşı daha iyi sürüş ve daha çok güvenlik sağlar. Fren ve direksiyon sistemi için servo sistemlerinin elektrifikasyonu, otomatik çalıştırma veya yardım sistemlerinin uygulanmasını kolaylaştırır. Dingil mesafesi aynı toplam uzunlukta daha uzun olabilir; Bu ise yolculara daha çok alan ve sürüş konforu verir. Elektrikli tahrikler bakım gerektirmez. Büyük tahrik aküsüne ayrıca çoğu yasal elektrikli araçta, genellikle başka bir küçük 12 volt kurşun-asit akü eklenir. Bu akü tahrik aküsü ile şarj edilir ve deşarj veya kaza nedeniyle tahrik aküsü devre dışı kalmış olsa bile bu küçük akü araç elektroniğinin bir kısmını, araç aydınlatmasını, özellikle de dörtlü ikaz flaşörlerini besler. Araç Kavramları Elektrikli arabalar yapım ilkelerine göre ayrılabilir: "Yeni geliştirilen elektrikli arabalar". Bu teknik avantaj, yeni geliştirmenin tek seferlik yüksek maliyeti dengelenir bu yüzden üretim miktarı yüksek olmalıdır. Örnekler; Mitsubishi i-MiEV, BMWi3, Nissan Leaf, tüm Teslalar, MEB- Platformunun tüm modelleri, Hyundai Ioniq 5, Porsche Taycan Geleneksel arabalardan elektrikliye dönüştürülen arabalar: Burada, geleneksel aracın içten yanmalı motor tahriki bileşenleri elektrik tahrikli aracınkilerle değiştirilir. Elektrik motoru ve akü mevcut alana yerleştirildiğinden bu bazı tavizler gerektirir. Az geliştirme çabası özel yapım tahrik bileşenlerinin yüksek parça maliyetleriyle dengelenir bu nedenle az üretim miktarlarına uygundur. Hem arazi aracı ToyotaRAV4EV, hem de 1990'dan bu yana "elektrikli seri" (Saxo, Berlingo, 106, Partner, Clio, Kangoo) PSAPeugeot Citroën ve Renault markalı yaklaşık on bin Fransız elektrikli otomobili ve ayrıca 2010 yılında Avrupa'da ortaya çıkan dünyanın ilk seri üretim elektrikli otomobili (dünya çapında yılda yaklaşık 17,000 araç) (ayrıca PSA tarafından Citroën C-Zero veya Peugeot Ion olarak biraz değiştirilmiş biçimde pazarlandı) olan Mitsubishi Electric Vehicle ve Elektro-Smart bu uygun maliyetli geliştirme yöntemine dayanır. Bu araçlar günlük yaşamda 100km boyunca yaklaşık 12-20 kWh elektrik enerjisine gerek duyar. VWe-up! 2013'ün sonundan, VWe-Golf ise 2014'ten beri piyasadadır. Diğer örnekler BMWi3'ün geliştirilmesi sürecinde kullanılan MiniE ve BMWActive'dir. Stromos ve Citysax gibi Alman elektrikli otomobiller Seri araçların dönüşümü olan elektrikli arabalar, küçük üreticilerin elektrikli araba üretmesini sağlar. Seri üretim yeni bir aktarma organı yapılır veya elektrik motoru standart manuel şanzımana flanşlanır. Sürüş performansı, menzil ve tüketim, büyük üreticilerin geleneksel seri otomobillerinin uyarlamalarından elde edilenlere benzer. Küçük seri üretim nedeniyle daha yüksek üretim maliyetleri, müşteri gereksinimlerine esnek uyum seçenekleri ve temel olarak elektrikli olmayan veya kullanılmış araçların kullanımı ile dengelenir. Sürücü küçükresim|BMWi3'ün sürücüsü İçten yanmalı motorların aksine, elektrik motorları çok yüksek torkla dönmeye başlar. Güç elektroniği grubu olan hız kontrolörü sürücüyü kontrol eder. Elektrik motorları tekerleklere çeşitli şekillerde, çoğunlukla redüksiyon dişlisi ve tahrik mili aracılığıyla, tekerleğe tekerlek göbek motoru birleştirilmiş veya araç dönüşümleri sırasında mevcut manuel şanzıman aracılığıyla da mekanik olarak bağlanabilir. Elektrik motorlarının geniş hız aralığı nedeniyle, e-araçlar için manuel şanzıman veya debriyaj gerekli değildir ancak genellikle redüksiyon dişlileri takılır. Elektrik motorları her iki yönde de çalışabilir ve bu nedenle ayrı bir geri vites gerektirmez. Ancak, özellikle orta ağırlıkta ve daha büyük araçlar için güç altında kaydırılabilen iki vitesli şanzımanlar vardır. Bu tür iki vitesli şanzımanlar, örneğin üretici bir araç modeline alternatif olarak farklı motor çıkışları sunuyorsa, belirli artış ve azalışlarda ölçeklenebilir. Birkaç tahrik motoru varsa (örneğin ön ve arka akslar için birer tane), elektrik motorları da farklı hızlar aralıkları için optimize edilebilir. Ekonomi Üretim maliyeti Elektrikli otomobilin en pahalı parçası bataryasıdır. 2010'da kWh başına 605 Euro olan birim batarya fiyatı, 2017'de 170 Euro'ya, 2019'da 100 Euro'ya düştü. İmalatçılar elektrikli araç tasarlarken az üretim sayıları için geliştirme maliyeti daha az olduğundan mevcut araba platformlarını dönüştürmenin daha ucuza çıkacağını hesaplayabilir. Ancak daha yüksek üretim sayılarında tasarım ve maliyetini en uygun yapmak için özel bir platform tercih edilebilir. Toplam sahiplik maliyeti Hindistan hariç dünya'da son zamanlardaki elektrikli otomobilin toplam sahiplik maliyeti, daha az yakıt ikmali ve bakım maliyetleri nedeniyle eşdeğer benzinli otomobilden daha ucuzdur. Yılda gidilen mesafe ne kadar çok olursa, elektrikli otomobilin toplam sahiplik maliyeti eşdeğer İYM otomobilden o kadar az olacaktır. Başabaş mesafesi vergilere, sübvansiyonlara, ülkeye ve farklı enerji maliyetlerine göre değişir. Bazı ülkelerde araba türünün farklı şehirlere girmesi için farklı ücretleri olabileceğinden karşılaştırma şehirden şehire değişir; örneğin, İngiltere, Londra’da İYM arabalar Birmingham'dan daha pahalıya şarj edilir. Satın alma maliyeti Çeşitli ulusal ve yerel hükümetler, elektrikli arabaların ve diğer eklentilerin fiyatlarını azaltmak için elektrikli araçlara devlet teşvikleri oluşturdu. 2020 itibarıyla elektrikli aracın bataryası, otomobilin toplam maliyetinin dörtte birinden fazladır. Batarya maliyeti kWh başına 100 ABD dolarının altına düştüğünde elektrikli araba fiyatının yeni İYM otomobil fiyatının altına düşmesi beklenmektedir. Ulusal vergilere ve sübvansiyonlara bağlı olarak leasing veya abonelikler bazı ülkelerde popülerdir, ve kiralık arabaların kiralamasının bitmesi ikinci el pazarını büyütmektedir. İşletme maliyetleri Elektrik gidilen kilometre başına yakılan benzinden neredeyse her zaman daha ucuza mal olur ancak elektrik fiyatı genellikle arabanın nerede ve günün hangi saatinde şarj edildiğine bağlı olarak değişir. Maliyet tasarrufları, konuma göre değişebilen benzin fiyatından da etkilenir.[[Dosya:Mitsubishi Electric Car.jpg|küçükresim|sağ|Mitsubishi i MiEV'in satışları Japonya'da Nisan2010'da , Hong Kong'da Mayıs 2010'da ve Australya'da Temmuz 2010'da başladı.]] [[Dosya:Roadster Goodwood.JPG|küçükresim|sağ|Tesla Roadster, 2008'de piyasaya çıktı, tamamen elektrikli 393 km’lik menzili vardı, 2011'de üretimi durdu.]] Elektrikli aracın motorunda sadece beş hareketli parça varken, benzinli aracın motorunda yüzlerce parçası vardır. Elektrikli otomobilin tasarımlarda az bakım masrafı vardır. Elektrikli aracın kilometre başına masrafını hesaplamak için bataryanın yıpranmasını hesaplamak oldukça zordur çünkü batarya her şarjında batarya kapasitesi yavaş yavaş azalır; kullanıcı batarya verimini yetersiz bulduğunda ömrü biter. Batarya ömrü bitmiş olsa bile değersiz değildir farklı kullanım için yeniden değerlendirilebilir, geri dönüştürülebilir veya yedek olarak kullanılabilir. Bataryaların birçok tekil hücreden oluşmasından dolayı bütün hücrelerde eşit düzeyde yıpranma olmaz, periyodik olarak en fazla yıpranan modül veya hücre değiştirilerek aracın menzili korunabilir. Bataryalarının normal garantisi sekiz yıl ya da 160.000km. Elektrik vs. Hidrokarbon(petrol) yakıt = Togg Sedan’ın enerji kullanımı 20 kWh / 100km dir. Nissan Leaf 100km’de 21.25 kWh 0,765 MJ/km ; 0,3420 kWh/mil) enerji kullanmaktadır. Bu farklılık değişik tasarım ve kullanım hedeflerinden ve değişken test standartlarından kaynaklanmaktadır. Araçların gerçek enerji kullanımı sürme şartları ve sürme sitili ile büyük ölçüde ilgilidir. Menzil ve şarj süresi İçten yanmalı motorlu araçların çoğu 750km menzile sahip olduğu değerlendirmesi yapılır ve çok kısa bir sürede neredeyse çok yaygın bir şekilde bulunan benzin istasyonlarından depolarını doldururlar. Elektrikli araçların çoğu tek şarj ile daha az bir menzile sahiptir ve şarj süresi 30 - 60 dk alabilmektedir. Şoförler günlük ortalama 50km’den az bir mesafe kat etmektedir. Bununla birlikte, insanlar hedeflerine varamadan bataryalarının biteceği endişesini yaşayabilirler. Lucid Air'da şarj başına 800 kilometreye (500 mil) kadar menzil bulunuyor. Otomobil üreticilerinin elektrikli araçların kısa menzilini uzatmak için tek bir çözümü vardır o da araçların bataryalarını değiştirilebilir şekilde yapmalarıdır. Batarya değiştirme teknolojisine sahip bir elektrikli araç 100 mil(160km)’lik bir sürüş menzili ile batarya değiştirme istasyonuna gidebilecektir ve tükenmiş batarya tam dolu batarya ile 1 dakikada değiştirilerek elektrikli araca 100 mil(160km)’lik bir sürüş menzili sağlayacaktır. Bu işlem benzinli araçlardaki depo doldurma işleminden daha temiz ve daha hızlıdır. Fakat yüksek yatırım maliyeti yüzünden ekonomik olarak uygulanabilir değildir. 2010 sonu itibarıyla batarya değiştirme teknolojisini elektrikli araçları ile entegre etmeyi planlayan iki şirket vardır: Better Place, Tesla Motors. Better Place Japonya’da 2010 Kasım’a kadar batarya değiştirme istasyonu işletti ve ABD, Kaliforniya’da dört adet batarya değiştirme istasyonu kurmayı planlamaktadır. Bir diğer depolama yöntemi doğru akım hızlı şarj istasyonları, üç fazlı endüstriyel prizlerden yüksek hızlı şarj yeteneği ile tüketiciler 500 kmlik bataryanın %80’ini 30 dakika gibi bir sürede şarj edebilmektedir. Türkiye’de bütün ülkeyi kapsayan hızlı şarj altyapısı 2023'te tamamlanacaktır. Hava Kirliliği ve Karbon Emisyonu Elektrikli otomobiller şehirlerde temiz havaya katkıda bulunur çünkü zararlı bir atık üretmezler; is, uçucu organik bileşikler, hidrokarbonlar, karbon monoksit, ozon, kurşun ve çeşitli nitrojen oksitleri gibi. Salınan karbon dioksit miktarı, aracı şarj etmek için kullanılan güç kaynağının emisyon yoğunluğuna bağlıdır, araç bazında düşünüldüğünde söz konusu aracın verimliliği ve şarj işlemi sırasında kayıp olan enerjiye bağlıdır. Şebeke elektriği için emisyon yoğunluğu ülkeden ülkeye değişmektedir, ve bir ülke değerlendirildiğinde talebe göre, yenilenebilir enerji kaynaklarının uygunluğuna göre ve fosil yakıtların üretimde verimliliğine göre değişmektedir. Sürdürülebilir enerji ile aracın şarj edilmesi çok düşük bir karbon yoğunluğuna sebep olmaktadır. İngiltere İngiltere’de 2021’de yapılan bir çalışma İngiltere’deki mevcut elektrik üretiminden dolayı ve elektrikli otomobillerin üretimi ve kullanımı ile ilgili emisyonlar dikkate alındığında bile elektrikli otomobillerin karbondioksit ve sera gazı emisyonlarını en az %65 azaltma potansiyeli olduğunu belirtti. Almanya En kötü durum senaryosunda artan elektrik talebi sadece kömürle karşılanabilecektir, 2009’daki World Wide Fund for Nature ve IZES tarafından yürütülen bir çalışma orta boyutlu bir Elektrikli otomobilin kabaca 200 g CO2/km, benzinli kompakt bir otomobil için ise 170 g CO2/km’lik bir ortalamayı ortaya koymuştur. Bu çalışma Almanya’da bir milyon elektrikli otomobil kullanımı halinde, en iyi senaryo olarak, elektrik altyapısına dair hiçbir geliştirme yapılmaması veya talebin yönetilmemesi koşulları altında CO2 emisyonunu sadece %0,1 düşürebilmiştir. Fransa Fransa’da temiz bir enerji şebekesi vardır, elektrikli otomobil kullanımından kaynaklanan CO2 emisyonu kilometre başına 12 g civarında olacaktır. Türkiye [[Dosya:Elektriği_Türkiye.svg|küçükresim|Türkiye'nin elektriğin kaynakları]] [[Dosya:Sera_gazlar_dairesel_grafik_Türkiye.svg|küçükresim|Sera gazlar Türkiye]] Envanterin henüz tamamlanmamış olması sebebiyle partikül madde kirleticilerin (PM2,5) emisyonlar Türkiye’nin Bilgilendirici Envanter Rapora dâhil edilmemiştir. Karayolu taşımacılığı sektöründe kullanılan yakıt, benzin/dizel ayrımı olmaksızın basitçe “petrol” olarak ulusal enerji dengesi tabloları edilmektedir. Türkiye'de 2020 Ulusal Seragazı Envanter raporunda, ulaştırma sektörü toplam karbon emsiyonunun %15'sinin kaynağıdır, ulaştırma sektörü içerisinde karayolu tipi %95'e denk gelmektedir. Türkiye'de satışı yapılan Renault Fluence Z.E. modelinin ortalama yakıt tüketimi 13,9kWh/100km'dir. Türkiye'nin kaynaklara göre ortalama birim elektriği emisyonu 420 gCO2/kWh ile Avrupa ortalamasının üstündedir. Üretimdeki emisyonlar Ricardo tarafından hazırlanan, 2011 raporunda hibrit elektrik araçlar, prize takılan hibritler ve bütün elektrikli otomobiller üretimleri esnasında mevcut sıradan otomobillerden daha fazla karbon emisyonu üretmektedirler, fakat bütün yaşam döngüleri üzerinde toplam karbon footprinti daha düşüktür. İlk yüksek karbon footprint’i batarya üretiminden kaynaklanmaktadır. Örnek olarak çalışma orta ölçekli bir elektrikli otomobilin üretim esnasında oluşan emisyonunun %43’ünün batarya üretiminden olduğunu değerlendirmiştir. Performans İvme ve aktarma organı tasarımı küçükresim|sağ|Zeminde batarya ve bir veya her iki aksta motorla tipik "kaykay" düzeni Elektrik motorları yüksek güç-ağırlık oranları sağlayabilir. Bataryalar, bu motorları çalıştıracak gerekli elektrik akımını verecek şekilde tasarlanabilir. Elektrik motorları, sıfır hıza kadar düz tork eğrilidir. Basitlik ve güvenilirlik için çoğu elektrikli otomobilin sabit oranlı şanzımanı vardır ve debriyaj yoktur. Aktarma organlarının çok daha az sürtünme kayıpları ve elektrik motorunun daha hızlı kullanılabilen torku nedeniyle, elektrikli otomobil içten yanmalı motorlu (İYM) otomobilden daha yüksek ivmelidir. Ancak, şehir içi araçlar nispeten 15kW (20 beygir) veya daha az güçlü motorları nedeniyle daha az ivmeli olabilir. Elektrikli araçlar ayrıca tekerlek göbeklerinde motor veya nadiren tekerlek yanında motor kullanır ancak bunun daha güvenli olduğu iddia edilir. Ayrıca göbek motoru kullanımıyla otomobilin ağırlık merkezi düşer ve hareketli parça sayısı azalır. Göbek motoru tekerleğin yaysız ağırlığını artırabilir, bu durum aracın kontrolü üzerinde olumsuz etki yaratabilir. Aks, diferansiyel veya şanzımanı olmayan elektrikli araçların daha az aktarma organı eylemsizliği vardır. Bazı doğru akım motorlu drag yarışçı elektrikli araçlarında maksimum hızı artırmak için iki hızlı manuel şanzımanlar vardır. Rimac Concept One Konsept elektrikli süper otomobilin hıza 2.5 saniyede çıkabileceği iddia edilmektedir. Tesla, Tesla Roadster'in 1.9 saniyede hıza çıkabileceğini iddia etmektedir. Enerji Verimliliği küçükresim|Amerika Birleşik Devletleri Enerji Bakanlığı'na göre şehir içi yollarda ve otoyollarda elektrikli arabaların enerji verimliliği. İçten yanmalı motorların, yakıtın yakılmasıyla üretilen enerjiye kıyasla aracı hareket ettirmek için kullanılan enerjinin bir kısmı olarak ifade edilen verimlilikte termodinamik sınırları vardır. Benzinli motorları, aracı hareket ettirmek veya aksesuarlara güç vermek için yakıt enerjisinin yalnızca %15'ini etkin şekilde kullanır; dizel motor'ları %20 verimliliğe çıkabilir; elektrikli araçlar, depolanmış kimyasal enerjiye göre hesaplandığında %69-72 veya yeniden şarj edilmesi gereken enerjiye göre hesaplandığında yaklaşık %59-62 verimlidir. Elektrik motorları, depolanan enerjiyi aracı sürmeye dönüştürmede içten yanmalı motorlardan daha verimlidir. Ancak, tüm hızlarda eşit derecede verimli değildirler. Buna izin vermek için, çift elektrik motorlu bazı otomobillerde, şehir hızları için optimize edilmiş vitesli bir elektrik motoru ve otoyol hızları için optimize edilmiş vitesli ikinci bir elektrik motoru vardır. Elektronik devreler, mevcut hız ve hızlanma için en iyi verime sahip motoru kendi seçer. Elektrikli araçlarda en yaygın olan Rejeneratif frenleme, frenleme sırasında normalde ısıya dönüşen enerjinin beşte birini geri kazanabilir. Elektrikli arabaların güç üretimi ve dönüşümü 10 ila 23 kwh/100km dir. Güç tüketiminin yaklaşık %20’si bataryaların şarj edilmesindeki verimsizliklerden kaynaklanır. Tesla Motors aracının verimliliği (şarj durumundaki kayıpları da içerir) lityum iyonlu bataryalar 12.7 kwh/100km(0.21 kwh/mi) ve kuyudan tekere verimlilik (elektriğin doğalgazdan üretildiği varsayımıyla) 24.4 kwh/100km(0.39 kwh/mi) ‘dir. Güvenlik Bataryalı elektrikli araçların güvenlik meselelerine uluslararası standart olan ISO 6469 ile değinilmektedir. Bu doküman özel meselelerle ilgilenen üç kısımdan oluşur: • Yerleşik elektrik enerjisi depolama örneğin batarya • Fonsiyonel güvenlik araçları ve hatalara karşı koruma • Elektrik kazalarına karşı insanların korunması Yangın Riski [[Dosya:Volvo C30 Electric WAS 2011 852.JPG|küçükresim|Volvo C30 DRIVe Electric'in batarya paketlerinin güvenliğini değerlendirmek için yapılan öncephe çarpışma testi.]]Yangın riski fosil yakıt arabasından çok daha azdır. Eğer arabanız yanarsa en iyi çözüm, yüksek voltajlı pilin kendi kendini yakmasına izin vermektir. Bu strateji ideal olmasa da pilin kendi kendine yanması yalnızca bir saat sürer. Alternatif, 6 ila 8 saat boyunca araca sürekli olarak su dökmek olacaktır. ABD’de General Motors itfaiyeciler ve ilk yardımcılar için çeşitli şehirlerde eğitim programları düzenledi ve Chevrolet Volt’un aktarma organlarının ve yüksek voltaj komponentleri kontrol eden 12 volt elektrik sisteminin güvenli bir şekilde ayrılması için görev dizilerini gösterdi sonra kazazedelerin tahliyesine geçildi. Volt’un yüksek gerilim sistemi, havayastığının açılması sonucu otomatik olarak kapatılacak şekilde tasarlanmıştır ve kontrol modülünden herhangi bir iletişim kaybı tespit edildiğinde de kapanır. GM ayrıca 2011 Volt’ta acil durum müdahalecileri için acil durum müdahale rehberi hazırlamıştır. Rehber ayrıca yüksek gerilim sisteminin ayırma yöntemlerini belirtir ve “cut zone” bilgisini belirler. Nissan’da ilk yardımıclar için bir rehber yayınladı, Nissan Leaf modelinin bir kazası esnasında hasarlı bu araca müdahale prosedürlerini açıklamaktadır. Bu rehber arabanın güvenlik sisteminin yerleşik otomatik işlemlerinden ziyade manuel olarak yüksek gerilim sisteminin kapatılmasını içermektedir. Ağustos 2012 itibarıyla, ABD’de Volt, Leaf veya Tesla Roadster markalarıyla ilgili bir kaza sonrası yangına rapor edilmiş değildir. [[Dosya:Fisker Karma 2.jpg|küçükresim|Fisker Karma prizli hibrit.]] [[Dosya:BYD Electric Taxi.jpg|küçükresim|Shenzhen, Çin'de BYD e6 tamamen elektrikli taksi.]] Araç Güvenliği Elektrikli aracın menzili ve dayanıklılığını artırmak için ağırlığının olabildiğince düşük tutulması yönünde büyük çabalar vardır. Bununla birlikte, ağırlık ve batarya kümeleri elektrikli araçları, benzinli araçlardan daha ağır yapmaktadır, menzili düşürmekte, fren mesafesini uzatmakta. Bununla birlikte, bir çarpışmada, ağır araçtaki yolcuların kaza durumu ortalama olarak daha az hasar ve daha önemsiz yaralar, hafif araçtaki yolcular ise daha ciddi hasarlar görmektedir. Bu yüzden ek ağırlık aracın performansına negatif bir etki olsa bile güvenlik açısından fayda sağlamaktadır. 900kg’lık bir aracın yaptığı kazada 1400kg’lık aracın yaptığı kazaya oranla yolcularda ortalama %50 daha fazla sakatlık olmaktadır. Tek araçlı kazada ve iki araçlı kazalarda diğer araç için arttırılmış ağırlık hızlanmada artışa sebep olmakta ve bundan dolayı kazanın şiddetinde artış olmaktadır. Bazı elektrikli arabalar düşük sürtme kuvvetli yuvarlanma dirençli tekerlek lastiği kullanır, tipik olarak normal lastiklere göre daha az hakim olma (sıkı tutma) sağlar. Düşük hızlarda elektrikli araçlar, içten yanmalı motorlu araçlarda daha az gürültüye neden olmaktadır. Görme engelli kişiler araçlardan çıkan gürültüyü sokaklarda yardımcı olarak değerlendirmektedir, bu yüzden elektrikli arabalar ve hibritler beklenmedik risklere sebep olabilmektedir. Testler gösterdi ki, bu endişe yersiz değil, araçlar elektrik modunda çalışırken 30km/h hızın aşağısında duyulması çok zor bir ses çıkarmaktadır. Daha yüksek hızlarda, lastik sürtünmesinden ve araç tarafında hava yer değişikliği ile duyulabilir bir ses üretmektedir. ABD Kongresi ve Japon Hükûmeti hibritler ve prizli elektrikli araçların elektrik modunda çalışırken ki minumum ses seviyesini düzenleyen kanunları düzenlediler, böylece görme engelli insanlar ve diğer yayalar, bisikletliler yaklaştıklarını duyabilecekler. Nissan Leaf, Nissan’ın yayalar için araç sesi sistemini kullanan ilk elektrikli araba oldu, araba ileri giderken bir ses, geri giderken başka bir ses çıkarmaktadır. Kontrollerdeki Farklılıklar Şimdilik bütün elektrikli araç üreticileri sürüş deneyimini sıradan otomatik transmisyonlu şoförlerin daha alışık olduğu şekilde benzetmek için en iyisini yapmaktadırlar. Modellerin çoğu bu yüzden bir PRNDL seçici, otomatik transmisyonlu arabalarda genellikle bulunur, temelindeki mekanik farklılıklarda bulunmaktadır. Basmalı butonlar, kullanım açısından en kolaydır, bütün modlar yazılım vasıtasıyla aracın kontrollerinde işletilmektedir. Motor tekerleklere kalıcı bir şekilde bağlanmış olsa bile sabit oranlı bir vites vasıtasıyla ve park etmeme mandalı tarafından sunulan hala seçici üzerinde sağlanan P ve N modları vardır. Bu durumda, N’de motor geçersiz olur ve elektriksel olarak işletilen el freni P modunu sağlar. Bazı arabalarda motor D’de küçük bir hareket için yavaş bir dönüş yapar, sıradan otomatiğe benzer. Ayak ICE’nin hızlandırıcısından kaldırıldığı zaman, motor freni arabanın yavaşlamasına neden olur. Elektrikli bir araç şu koşullar altında enerjisiz ilerleyebilir, ve hafif yenileyici freni uygulamak daha alışılmış bir karşılık sağlamak yerine L modu seçilerek aralıksız yokuş aşağı sürüş için bu etki artırılabilir, düşük bir vites seçmeye benzer bir süreçtir. Kabin Isıtma ve Soğutma Elektrikli araçlar aracın içini ısıtmak için çok az atık olarak ısı ve direnç elektrik ısısı üretirler, kullanılabilecek eğer ısı batarya şarjından/boşalmasından üretilecekse içeriyi ısıtmak için kullanılamaz. Isıtma basitçe elektrik direnç ısıtıcısı ile sağlanabilirken, yükske verimlilik ve tamamlayıcı soğutma tersine çalışan bir ısı pompasından elde edilebilir (hibrit Toyota Prius ‘larda şu anda işletilen sistemlerdir). Pozitif Sıcaklık Katsayısı(PTC) kavşak soğutma basitliği sebebiyle ilgi çekicidir- bu tür bir sistem örneğin Tesla Roadster’lerde kullanılmaktadır. Kabin soğutması güneş enerjisi ile artırılabilir, en basir şekilde ve etkin olarak dış havayı araç kapalı ve güneş halinde artacak aşırı ısınmayı engeller(bu tür soğutma mekanizmaları sıradan araçlar için satış sonrası kitleri olarak bulunmaktadır). 2010 Toyota Prius’un iki modeli bu özelliği bir opsiyon olarak bulundururlar. Bataryalar küçükresim|50 watt-saat/kilogram'lık lityum-iyon polimer batarya prototipleri. Yeni lityum-iyon hücreleri 130 W.h/kg sağlayabilir ve binlerce kez şarj çevrimine dayanabilir. Değiştirme küçükresim|The Renault Fluence Z.E. Better Place ağında bulunan ilk elektrikli araba. Satışlar Ocak 2012'de İsrail'de başladı. Hızlı şarj etmeye bir alternatifte tükenmiş veya tükenmekte olan bataryaları(veya batarya menzil uzatma modülleri) tam dolu bataryalarla değiştirilmektedir. Bataryalar leasing ile veya kiralama il, satın almak yerine, kullanılabilir ve bakım leasing şirketine veya kiralanan şirkete bırakılır, ve kullanılabilirliği garanti eder. Çeşitli şirketler bu iş modelini işletmek için girişimlerde bulundular, ve Better Place ilk olarak İsrail’de elektrikli araç ağını yerleştirdi, ve Danimarka ve Hawai’de benzer şarj etme ağları onu takip etti. 100 civarında Renault Fluence Z.E. İsrail’e gönderildi ve Better Place çalışanları arasında 2012 Ocak’ta tahsis edildi. Perakende müşteri satışları 2012’nin ikinci çeyreğinde başlaması planlandı. Değiştirilebilir bataryalar elektrikli otobüslerde 2008 Yaz olimpiyatlarında kullanıldı. Araçtan şebekeye: Yükleme ve Şebeke ara bağlama Akıllı bir şebeke bataryalı elektrikli araçların şebekeye güç sağlamasına izin verir, özellikle: • Tepe yük periyotları, süresinde, elektriğin daha pahalı olduğu zamanlarda. Bu araçlar tepe yükün olmadığı daha ucuz tarifeli saatlerde fazladan gece üretimini absorbe etmeye yardımcı olarak tekrar şarj edilebilir. Araçlardaki bataryalar gücü tampon eden dağıtık depolama sistemi olarak çalışırlar. • Elektrik kesintisi esnasında, acil yedek sağlayıcı olarak kullanılabilir. Gelecek Bataryalı elektrikli araçların geleceği doğrudan masraflara ve yüksek özellikli enerjili bataryaların ulaşılabilirliğine, güç yoğunluğuna ve uzun ömürlü olmasına ve diğer motorlar, motor kontrolörleri ve şarj cihazları ve içten yanmalı motorlu araçlarla masraf rekabet edilebilirliğine bağlıdır. Dört milyar elektrikli arabayı enerjilendirecek yeterli lityum rezervinin bulunduğu tahmin ediliyor. Diğer Enerji Depolama Yöntemleri Deneysel süperkapasitörler ve volanla enerji depolama mukayese edilebilir depolama kapasitesi, hızlı şarj ve düşük uçuculuk sunmaktadır. Bu alternatifler elektrikli araçlar için tercih edilen şarj edilebilir depolama ile bataryaları yakalama kapasitesine sahiptir. FIA Formula 1 yarış araçları için kullanımda olan enerji sistemlerinin sportif düzenlemelerinde 2007’de (süperkapasitörler) 2009’da (volan enerji depolama cihazları) eklemeleri yaptı. Güneş Arabaları Elektriği yerleşik bulunan güneş panellerinden sağlayan elektrikli arabalar güneş arabalarıdır. 2005 Dünya Güneş Yarışmasından sonra güneş yarış arabalarının otoban hızlarını geçebileceği ortaya kondu, küçük değişiklikler ile bu araçların ulaşımda kullanılabilmesi için tanımlamalar değiştirildi. Şarj Etme Bataryalı elektrikli araçlardaki bataryaların periyodik olarak şarj edilmelidir (Değiştirme’yi okuyun, yukarıda). Fosil yakıtlarla enerjilenen araçlardan farklı olarak, bataryalı elektrikli araçlar gece boyunca evde şarj edilmeleri kullanışlıdır, bir dolum istasyonuna gitmek kullanışlı değildir. Sokak ya da market şarj etme istasyonu kullanılarakta şarj edilebilir. Şebekedeki elektrik çeşitli kaynaklardan üretilmektedir; örneğin kömür, hidroelektrik, nükleer ve diğerleri. Çatılarda bulunan fotovoltaik güneş panelleri, mikro hidro veya rüzgar gibi güç kaynakları da kullanılabilir ve küresel ısınma endişeleri nedeniyle desteklenebilir. ABD Şarj Etme Standartları 1998’de Kalforniya Hava Kaynak Komisyonu güç şarj etme seviyelerini sınıflandırdı, bu seviyeler Kaliforniya düzenleme kanununun 13 başlığında kanunlaştı, 1999’da ABD’de Ulusal Elektrik kanununun 625. kısmında ve SAE Uluslararası standartlarda bulunuyor. Üç standart geliştirildi; Level 1, Level 2 ve Level 3 şarj etme. Bağlayıcılar Kaliforniya Hava Kaynakları Komisyonu SAE J1772-2001 standardında 2001 Haziran’da Kalforniya’da elektrikli araçlar için şarj etmede belirlenmesinden sonra elektrikli araçların çoğu tekrar şarj etme için iletken eşleme elektrik sağlama için kullanılmaktadır. Avrupa’da ACEA IEC_62196 priz tiplerinden Avrupa Birliğinde elektrikli araçların iletken şarj edilmesi için Tip 2 bağlayıcıları kullanmaya karar verdi, Tip 1 bağlayıcılar(SAE J1772-2009) üç fazlı şarj etme sağlamamaktadır. Diğer bir yaklaşım endüktif şarj etmedir, araba da bulunan bir yuvaya yalıtkan bir palet(kanatçık) kullanılarak yapılır. Delco Electronics’in geliştirdiği Magna Charge endüktif şarj sistemi 1998’lerde General Motors EV1 ‘de ve ayrıca Chevrolet S-10 EV ve Toyota RAV4 EV araçlarda kullanıldı. Yenilemeli Frenleme Yenilemeli frenleme kullanarak, bu özellik birçok hibrit elektrikli araçlarda mevcuttur, yaklaşık olarak kaybedilen enerjinin %20 si bataryayı tekrar şarj etmek için kazanılır. Şarj Etme Süresi küçükresim|Smart ED Level 2 istasyonundan şarj olmaktadır. Daha çok elektrik gücü araçların şarj süresini düşürür. Güç şebeke bağlantısının kapasitesiyle sınırlıdır ve level 1, level 2 şarj etme için, arabanın yerleşik güç derecesi ile sınırlıdır. Normal bir eve ait priz (ABD, Kanada, Japonya ve diğer 110 V kullanan ülkelerde). 1.5 kW ile (230 V kullanan ülkelerde) 3 kW arasındadır. Evin bağlantılı olduğu ana hat normal ev yüklerine ek olarak belki 10,15 veya 20 kW sağlayabilir- gerçi görünür bütün kapasiteyi kullanmak mantıksız olacaktır- ve bunu kullanmak için ayrı bir hat çekilmesi gerekebilir. Yerleşik şarj ünitesine örnek olarak, Nissan Leaf çalışma esnasında 3.3 kW şarj ünitesine, ve Tesla Roadster yüksek güç duvar bağlayıcıdan 16.8 kW’a(240 V, 70A) kadar kabul edilebilir. Elektrik kaynak gücü artırılabilse bile, çoğu batarya kendi şarj değeri(”1C”) dan daha büyük bir şarjı kabul etmez çünkü yüksek şarj değeri bataryaların deşarj kapasitesi üzerinde olumsuz bir etkiye sahiptir. Bu güç sınırlamalarına rağmen, en az güce sahip sıradan bir ev prizi bile gece boyunca 15kWsa dan fazla bir enerji sağlar, çoğu elektrikli arabayı 70 kilometreden fazla götürmeye yeter. Hızlı şarj etme Lityum titanat, LiFePO4 ve hatta bazı NiMh çeşitleri gibi bazı batarya tipleri tam kapasitelerine neredeyse 10-20 dakikada şarj edilebilir. Üç fazlı güç beslemesinden bazen elde edilen yüksek akımlarla hızlı şarj etme sağlanır. Bataryaları aşırı şarjın sebep olacağı zarardan korumak için dikkatli(hassas) şarj yönetimi gerekir. Çoğu kişiye genelde hızlı şarj etme gerekmez, çünkü 6 dan 8 saate kadar(deşarj seviyesine bağlı olarak) iş günü veya gece boyunca evde şarj etmeye yeterli zamana sahiptirler. Bataryalı Elektrikli Araç sürücüleri sıklıkla evde şarj etmeyi tercih ederleri kamuya açık bir şarj istasyonuna gitmenin zorluğundan sakınırlar. Avrupa’da elektrik beslemesi 240 V’tur, evdeki akım ise genelde 13 A’dir. Bu da demektir ki, güç elektirkli araçlara 3.1kW civarında ve 8 saatte tamamen şarj olabilmektedir. Hobi olarak uğraşanlar, elektrikliye dönüştürme, ve yarışlar küçükresim|Eliica prototype küçükresim|sağ| Tamamen elektrik Formula Student car of the Eindhoven University of Technology Hobi olarak kendi araçlarını sadece elektrikle çalışacak şekilde dönüştürme yapmaktadırlar. Hobi amaçlı uğraşanlara yönelik bataryalı elektrikli araçların ev veya garaj ortamında dönüşümünü destekleyen bir endüstri mevcuttur. Kısa menzilli bataryalı elektrikli araçlar hobi için uğraşan kişilere menzil hariç rahatlık, hızlılık ve kullanışlılık sağlamaktadır. Kısa menzilli Elektrikli Araçlar yüksek performanslı kurşun asit bataryalar kütlenin yarısı kadar kullanılarak 100 ila 130km menzile ulaşabilir. Sonuç olarak 50km menzilli bir araç önden arkaya 40/60’lık bir ağırlık dağılımı ile tasarlandığında, güç yönetimine gerek olmaksızın, çalışma menzillerinin sonlarında fevkalade bir hızlanma sunar, ve otoban kapasiteli ve yasaldır. Bu yüksek performans bataryaları için yüksek masraflar sebebiyle elektrikli araçlar masraflı olmaktadır. Manuel bir güç aktarım bulundurarak, kısa menzilli elektrikli araçlarda daha iyi performansa ve daha iyi verimliliğe sahip olabilir. Yakın çevre elektrikli araçlar için golf arabalarından çevrilenlerden farklı olarak, kısa menzilli elektrikli araçlar sıradan mahalle caddelerinde kullanılabilir (60–80km/h) otobanların yavaş gidilen şeritlerinde kullanılabilir. Kronik yakıt kriziyle yüzleşen Gazze Şeridinde, Filistinli bir elektrik mühendisi Waseem Othman al Kazander 2008’de kendi icadı olan metotla 32 elektrik bataryası ile aracını dönüştürmüştür. Al Khazander’a göre bataryalar 2$’lık elektrikle 180 ile 240km sürme sağlayabilir. 7 saatlik şarjdan sonra, araba 100km/h hıza çıkabilmektedir. Japon profesör Hiroshi Shimizu, Keio Üniversitesi, Çevresel Bilgi Fakültesinden bir hoca elektrikli bir limuzin geliştirdi: Elica(Elektrik lityum-iyon araba) 55 kw’lık hub motorlu 8 tekere toplamda 470kW güce ve sıfır emisyona sahiptir, 370km/sa maksimum hıza ve 320km’lik maksimum menzile sahiptir. Bununla birlikte, mevcut modelleri yaklaşık 300 000 dolara mal olmakta, bu fiyatın üçte biri batarya masrafıdır. 2008’de bazı Çinli üreticiler lityum demir fosfat batarya üreterek hobi için uğraşanlara ve araç dönüştürme marketlerine satmaya başladı. Bu bataryalar daha iyi güç/ağırlık oranı sunarak, 120–240km menzilli dönüştürülmüş araçlara olanak sağlamaktadır. 2009 ortaları itibarıyla ücretler derece derece yaklaşık kWh başına 350 dolar seviyesine düşmüştür. LiFePO4 hücreleri 3000 kulllanımlık bir ömre sahipken, sıradan kurşun -asit bataryalar 300 kullanım değerine sahiptir. LiFePO4 hücrelerin yaşam süresi tahmini 10 yıldır. Bu durum bireysel girişimciler tarafından dönüştürülen araç sayısında bir artışa öncülük etti. LiFePO4 hücreleri kurşun-asit bataryalara göre daha pahalı batarya yönetimi ve şarj sistemi gerektirir. Elektrik kalkış yarışı, elektrikli araçların hareketsiz halinden başladığı ve belirli kısa bir mesafede en yüksek hıza ulaşmaya çalıştıkları bir yarıştır. Benzinli araçlarla yarıştıklarında genellikle kazanmaktadırlar. NEDRA gibi organizasyonlar sertifikalı ekipmanlar kullanarak dünya çapında rekorları tespit etmektedir. Devlet Desteği [[Dosya:Nissan Leaf & Chevy Volt charging trimmed.jpg|küçükresim|upright=1.25|Nissan Leaf tamamen elektrikli araba ve Chevrolet Volt prizli hibrit daha uygundur, prizli elektrikli araçlar için çeşitli ülkelerde devlet desteği bulunmaktadır.]] Çeşitli ülkeler batarya boyutuna göre değişen yeni elektrikli araba satın almaları için teşvikler ve vergi indirimleri geliştirmişlerdir. Nisan 2011 itibarıyla, 15 Avrupa Birliği üyeleri elektrikle şarj olan araçların satın alınması için ekonomik teşvikler sağlamaktadırlar; bu teşvikler vergi indirimleri, muafiyetleri, tam elektrikliler, priz hibritler, hibrit elektrikli araçlar ve bazı alternatif yakıtlı araçlar için taksitler gibi kalenlerden oluşaktadır. Türkiye’de Elektrikli Otomobiller Türkiye'de 2021 yılında 2849 adet elektrikli otomobil satışı yapılmıştır. Elektrikli araç dönüşümüne dair yönetmelik Bilim Sanayi ve Teknoloji Bakanlığı tarafından yayınlanmıştır. Elektrik şarj altyapısı büyük şehirlerde kurulmaya başlanmıştır. Türkiye'de elektrikli otomobillere motor güçlerine göre üç kademeli bir vergi indirimi uygulanmaktadır. Opel Ampera benzinli bir elektrik jeneratörüne sahip olduğu için, Türkiye'de elektrikli araçlara uygulanan vergi indiriminden faydalanamamaktadır. Hibrit modellerde bu indirimden faydalanamamaktadırlar. Yerli elektrikli otomobil üretimi ile ilgili gelişmeler de yaşanmaktadır. Kaynakça Dış bağlantılar History and Directory of Electric Cars from 1834 to 1987 Electric Car Society Türkiye ulaştırma sektörünün dönüşümü: Elektrikli araçların Türkiye dağıtım şebekesine etkileri , SHURA Enerji Dönüşümü Merkezi, 2019 Kategori:Çok uzun maddeler Kategori:Otomotiv teknolojisi Kategori:Pille çalışan elektrikli taşıtlar Kategori:Sürdürülebilir teknolojiler
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri