Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Hidrojen depolama

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
küçükresim Yapılan araştırmalar sonucunda, mevcut koşullarda hidrojenin diğer yakıtlardan yaklaşık üç kat daha ucuz olduğu ve yaygın bir enerji kaynağı olarak kullanımının, hidrojen üretiminde maliyeti düşürücü teknolojik gelişmelere bağlı olacağı ortaya çıkmıştır. Bununla birlikte, ihtiyaç fazlası elektrik enerjisinin hidrojen olarak depolanması günümüz için geçerli bir alternatiftir. Bu tarzda depolanan enerjinin yaygın olarak kullanılabilmesi, biraz da yakıt piline dayalı otomotiv teknolojilerinin geliştirilmesine bağlıdır. Depolanabilirlik, hidrojenin en önemli özelliklerinden biridir. Günümüzde büyük miktarlarda enerji depolamak için hâlâ uygun bir yöntem bulunamamış olması, hidrojenin önemini daha da arttırmaktadır. Bir örnek verilecek olursa; eğer bugün hidroelektrik santrallerinden elde edilen enerjinin depolanması mümkün olsaydı, enerji sorunu büyük ölçüde çözülmüş olurdu. Hidroelektrik enerji kaynağı bol olan Kanada ve Yeni Zelanda gibi ülkelerin bu doğrultuda programlar başlattığı bilinmektedir. Bu yaklaşım hidroelektrik santrallerinin belirli yoğunlukta sürekli çalışmasını esas almakta, ihtiyaç fazlası enerji ise suyun elektrolizi ile hidrojen üretiminde değerlendirilmekte ve bu şekilde enerji depolanmaktadır. Buna rağmen hidrojenin en hafif element olması, depolanma açısından sorun oluşturmaktadır. Bu sorunun önüne geçmek için çeşitli yöntemler geliştirilmiştir. Sıkıştırılmış Gaz Hidrojen konusunda en bilinen depolama yöntemi, gaz olarak basınçlı tanklarda depolamaktır. Hidrojen, günümüzde genellikle 50 litrelik silindirik depolarda 200-250 barlık basınç altında depolanmaktadır (bu basınç değeri 600-700 bara kadar çıkabilir). Ancak hidrojen çok hafif olduğundan dolayı hacimsel enerji yoğunluğu çok düşüktür. Bunun dışında, yüksek basınç sebebiyle depolama tankları çok ağır olmaktadırlar. Bu durum, hidrojenden alınacak olan verimi düşürür. Örneğin, basınçlı depo malzemesi olarak östenitik çelik ve bazı alüminyum türleri kullanıldığında, depolanan hidrojenin, tüm depo ağırlığına oranı %2-3 civarında kalmaktadır. Ancak bu malzemelerin yerine karbon kompozit kullanılmasıyla, ağırlık oranı daha da artmış ve %11,3 seviyesine yükselmiştir. Tanklar genellikle çelik, kompozitle kaplanmış alüminyum ve kompozitle kaplanmış plastik malzemeden yapılmaktadır. Taşıtlarda ise hafif kompozit kullanılmaktadır. Sıvı Hidrojen Hidrojen petrole göre 4 kat fazla hacim kapladığından dolayı, bu hacmi küçültmek için hidrojeni sıvı halde depolamak gerekir. Bunun için de yüksek basınç ve soğutma işlemine ihtiyaç duyulur. Hidrojen gazı 20,25 K (Kelvin) sıcaklıkta sıvılaştığı için, sıvı depolarında izolasyon önemlidir. Sıvı hidrojen, özellikle uzay teknolojisinde ve bazı roketlerde kullanılmaktadır. Sıvı hidrojen, 900 bar basınç altındaki hidrojen gazıyla aynı yoğunluğa sahiptir: 71kg/m3. Ancak sıvı depolama, gaz sıkıştırmaya göre daha düşük basınçlarla çalışıldığı için daha emniyetlidir. Ayrıca depolama tankı ile sıvı hidrojenin ağırlık oranı %26 civarındadır. Bu yöntem orta veya küçük ölçekte depolama için en çok kullanılan yöntemdir, ancak büyük miktarlar için oldukça pahalıdır. Çünkü hidrojeni sıvılaştırmak için gereken enerji, hidrojenin sağlayacağı yakıt enerjisinin %28’i civarındadır. Bu oran büyük olsa bile, uzay araçları ve roketlerdeki sıvılaştırma masrafları göz ardı edilmektedir. Ayrıca, Mercedes, GM ve Honda gibi üreticiler, sıvı hidrojenle çalışacak modeller geliştirmektedir. Bir diğer pratik çözüm ise, sıvı hidrojenin düşük sıcaklıktaki tanklarda saklanmasıdır. Örneğin, dünyanın en büyük sıvı hidrojen tankı, Kennedy Uzay Merkezi’nde olup, 3400 m3 sıvı hidrojen alabilmektedir. Bu miktar hidrojenin yakıt olarak değeri 29 milyon MJ veya 8 milyon kW.saat'e karşılık gelmektedir. Sıvı hidrojen büyük tanklarda depolanmışsa günlük %0,06’sı, küçük tanklarda depolanmışsa günlük %3’ü buharlaşarak kaybolmaktadır. Bu oranın azaltılması izolasyona bağlıdır. Hidrokarbonlar Metanol veya etanol gibi hidrokarbonlu yakıtlar, saf sıvı hidrojenden daha fazla hidrojen içerirler. Yüksek sıcaklıklarda su buharı kullanılarak, hidrokarbonlardan hidrojen ayrıştırılabilir. Böylece, %70-75 oranında hidrojenin yanı sıra, karbondioksit, karbonmonoksit ve su oluşur. Hidrokarbonlu yakıtlar, hidrojenli araçlar için daha iyi bir alternatif sunarlar. Örneğin, metanol kullanımı ile, ağır hidrojen tanklarına veya dolum istasyonlarına gerek kalmayacaktır. Daimler-Chrysler’e göre metanol, sıvı hidrojenden daha yaygın olarak kullanılacaktır. Çünkü normal şartlar altında sıvı olarak bulunması sebebiyle, kullanılan arabalar üzerinde fazla bir değişiklik yapılmadan adapte olunması mümkün olacaktır. Hidrürler Hidrojen kimyasal olarak metallerde, alaşımlarda ve ara metallerde hidrür olarak depolanabilmektedir. Önemli ölçüde hidrojen absorbe eden metal hidrürler, hidrojen depolamak için çok uygun bir yöntem olmasına karşın, kendi ağırlıkları ciddi sorun olarak ortaya çıkmaktadır. Şu anda en öne çıkan metal hidrür cinsi olan Titanyum emdirilmiş NaAIH, gelecek vadetmekte ve 250°C’de %4,5 oranında hidrojen depolamaktadır. Ancak 35 defa tekrarlanan doldurma-boşaltma sonunda hidrojen depolama kapasitesinin %4,5’ten %3,5’e indiği gözlenmiştir. Metal hidrürlerin çok ağır olması, belli bir doldurma-boşaltma kapasitelerinin olması ve ayrıca nadir bulunan elementlerden oluşmaları, eksi yanlarıdır. Son 10 yıldır yüksek depolama kapasiteleri nedeniyle alüminyum ve bor içeren kompleks hidrürler yoğun olarak çalışılmaktadır. Bor içeren kompleks hidrürler sıvı koşullarda kullanılması nedeni ile de önem taşımaktadır. Bor esaslı sistemler ana olarak sodyum bor hidrürü esas almaktadır. NaBH, katı halde ağırlıkça %10,5 hidrojen içerir. Çözelti halindeki sodyum bor hidrür, aşağıdaki reaksiyona göre hidrojenini vererek sodyum meta borata dönüşür: NaBH + 2HO → 4H + NaBO HO ve NaOH ilavesi ile sodyum bor hidrürün sıvı içerisindeki miktarı ağırlıkça %20-35 arasında olabilmekte, bu da sistemde ağırlıkça %4,4-7,7 arasında hidrojenin depolanmasına olanak vermektedir. Sodyum bor hidrürde hidrojen depolamanın en önemli üstünlüğü depolanan hidrojenin oda sıcaklığında geri alınabilmesi ve geri alımın katalizör yardımı ile kolaylıkla kontrol edilebilmesidir. Sodyum bor hidrürün hidrojen amaçlı kullanımında en önemli sorun, oluşan meta boratın tekrar NaBH’e dönüştürülmesidir. Hidrojen depolamada sodyum bor hidrür kullanmanın bir diğer avantajı, hidrojene geçişte en önemli sorun olarak görülen hidrojenin patlayıcılık riskinin azaltılmasıdır. Hidrojen kullanımının verimli hale gelebilmesi için, patlama riskinin mutlaka azaltılması gerekmektedir. Sodyum bor hidrür, belli koşullarda yanmayan, ancak istendiğinde hidrojeni açığa çıkartan bir özelliğe sahiptir. Halen özel camlar veya izolasyon malzemeleri gibi alanlarda kullanılan sodyum bor hidrürün ana maddesi olan bor, Türkiye’de de bolca bulunmaktadır. Hidrojen depolamada sodyum bor hidrürün efektif olarak kullanılabilmesi pratikte mümkün olmayacaktır. Bir evin nominal güç ihtiyacının veya en düşük kapasiteli bir aracın 5000 watt olduğu düşünülürse, dakikada 64 litre hidrojene ihtiyaç duyulacak. (5000 watt yakıt pili ile ilgili özellikler: ) Bu durumda 5000 watt için saatte 3840 litre hidrojen lazım. Yani 272kg hidrojeni 1 saatte tüketeceğiz. Borhidrür içerisinde ağırlıkça %20 hidrojen olduğu hesap edilirse 1300kg bor hidrür kullanarak 1 saat boyunca 5000 watt güç elde etmiş olacağız ki bu da pratikte kaldırılması mümkün olmayan yükleri getirecektir. Enerji depolamada hidrojenin alternatif olabilmesi bu açıdan pek mümkün görünmüyor. Karbon Nanotüpler Hidrojen, gaz veya sıvı olarak saf halde uygun çelik tanklarda depolanabileceği gibi, fiziksel olarak karbon nanotüplerde de depolanabilmektedir. Karbon, özellikle yüksek oranda gözenekli çok küçük parçalar haline getirilebilmesi ve karbon atomları ve gaz molekülleri arasında oluşan çekim kuvveti nedeniyle gaz depolamaya en elverişli maddelerden biridir. Karbon nanotüpler, grafit tabakaların tüp şekline dönüşmüş halidir. Çapları birkaç nanometre veya 10-20 nanometre mertebesinde, boyları ise mikron seviyesindedir. Elastiklik modülleri çelikten 5 kat daha fazladır. Tek cidarlı nanotüpler %14, çok cidarlılar %7,7, içlerine alkali elementler yerleştirilenler ise %20 ağırlık oranına kadar hidrojen depolayabilirler. 20 bar basınç altında yapılan deneylerde, bu oran %70’e kadar çıkarılmıştır. Nanotüpler'in en büyük dezavantajı maliyetlerinin oldukça yüksek olmasıdır. Eğer gelecekte ucuz üretim yöntemleri gelişirse, yaygın olarak kullanılabilecek hale gelebilirler. Nanotüplerdeki absorbe işlemi, karbon atomlarının hidrojen moleküllerine uyguladığı Van Der Waal’s kuvveti ile gerçekleşmektedir. Yani kimyasal değil, fiziksel bir olaydır. Ayrıca karbon nanotüpler'in hidrojenin depolanması yanında hidrojen kullanılarak elde edilen enerji sistemlerinde de kullanımı vardır. Cam Küreler Çapları 25-500μm arasında değişen cam küreler, cidar kalınlıkları 1μm olan bir tarafı açık cam baloncuklardır. Bu kürelere yüksek basınç ve sıcaklık altında depolanmaktadır. Yüksek sıcaklık sonucunda cam cidarı geçirgen hale geldiğinde, hidrojen atomları camlara girer. Camlar soğutulunca da içeride hapsolur. Depolanan hidrojen, camların ısıtılması veya kırılması yoluyla tekrar geri alınabilir. Cam kürelerin depolama kapasitesi 200-490 bar basınç altında %5-6 civarındadır. Mağaralarda Depolama Bütün bu yöntemlerin dışında hidrojen gazını depolamanın belki de en ucuz yöntemi, doğalgaza benzer şekilde, yeraltında, tükenmiş petrol veya doğal gaz rezervuarlarında depolamaktır. Maliyeti biraz yüksek olan diğer bir depolama şekli ise, hidrojeni maden ocaklarındaki mağaralarda saklamaktır. Örneğin Almanya’da Kiel şehrinde 1971’den beri yerin 1330 m altındaki bir mağarada hidrojen depolanmaktadır. Ancak mağaralarda saklanan hidrojenin yılda %1-3’ü arası, sızıntı nedeniyle kaybolmaktadır. Kaynakça Goodstein, D. (2004). Out of gas. New York: Norton & Company, Inc. Karaosmanoğlu, F., Çetinkaya, M., Orkun, E. (2003). II. Ulusal Hidrojen Kongresi. Ankara: Hidrojen Enerjisi Forumu Yayınları. NTV-MSNBC. (2004, 11 Kasım). İlk Türk yakıt pili 18 ay sonra. NTV-MSNBC. (2004, 24 Aralık). 2005 hidrojen motorların yılı olacak. NTV-MSNBC. (2004, 24 Aralık). Bor, hidrojen ekonomisinin yıldızı. Spiro, G., Stigliani, M. (2003). Chemistry of the Environment. New Jersey: Prentice Hall Kategori:Hidrojen Kategori:Depolama
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri