Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Karmaşık düzlem

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
sağ|küçükresim| 'nin ve eşleniği 'in karmaşık düzlemdeki geometrik gösterimi. Orijinden z noktasına kadar olan açık mavi renkli çizgi boyuncaki uzaklık z 'nin modülüsü veya mutlak değeridir. φ açısı z 'nin argumentidir. Matematikte karmaşık düzlem, gerçel eksen ve ona dik olan sanal eksen tarafından oluşturulmuş, karmaşık sayıların geometrik bir gösterimidir. Karmaşık sayının gerçel kısmının x-ekseni boyuncaki yer değiştirmeyle, sanal kısmının ise y-eksenindeki yer değiştirmeyle temsil edildiği değiştirilmiş bir Kartezyen düzlem olarak düşünülebilir. Karmaşık düzleme bazen de Argand düzlemi denmektedir çünkü Argand diagramlarında kullanılmaktadır. Bu terimler ilk defa Norveçli-Danimarkalı kadastrocu ve matematikçi Caspar Wessel (1745-1818) tarafından kullanılmış olmasına rağmen, Jean-Robert Argand'ın (1768-1822) adıyla anılmaktadır. Argand diagramları karmaşık düzlemdeki bir matematiksel fonksiyonun kutuplarını ve sıfırlarını çizmek için sık sık kullanılır. Karmaşık düzlem kavramı karmaşık sayıların geometrik bir yorumuna da izin verir. Toplama altında, vektörler gibi davranırlar. İki karmaşık sayının çarpımı en kolay şekilde kutupsal koordinatlarda açıklanabilir – çarpımın büyüklüğü (veya modülüsü) iki mutlak değerin çarpımlarına eşittir ve çarpımın açısı (veya argumenti) iki açının veya iki argumentin toplamına eşittir. Özelde, modülüsü 1 olan bir karmaşık sayıyla çarpım rotasyon gibi davranır. Gösterimsel uzlaşmalar Karmaşık analizde karmaşık sayılar geleneksel olarak z ile gösterilirler. z 'nin kullanıldığı durumlarda ise w veya ω kullanılır. z sayısı, x ve y 'nin gerçel sayılar olduğu gerçel(x) ve sanal(y) kısımlarına gibi ayrılabilir. Burada i sayısı sanal birimdir. Bu geleneksel gösterimde z karmaşık sayısı, kartezyen düzlemindeki (x, y) sayısına karşılık gelmektedir. Kartezyen düzleminde (x, y) ayrıca kutupsal koordinatlar kulllanılarak olarak ifade edilebilir. Kartezyen düzlemde arctanjant fonksiyonunun -π ile π (radyan cinsinden) arasında değer aldığı varsayılabilir ve x ≤ 0 olduğunda (x, y) noktaları için gerçel arctanjant fonksiyonunu tanımlamada dikkat edilmelidir. Karmaşık düzlemde bu kutupsal koordinatlar şu formu alırlar: Bu denklemde, eşitlikleri alınmıştır. |z| burada z 'nin mutlak değeri veya modülüsüdür; θ ise z 'nin argumentidir ve genelde 0 ≤ θ f 'nin bu bölge üzerinde neden tek değerli olduğunu anlamak için, birim çember etrafında ilk yaprak üzerinde z = 1 'den başlayan bir döngü ele alalım. 0 ≤ θ < 2π olduğunda hala ilk yaprakta oluruz. θ = 2π olduğunda ikinci yaprağa geçeriz ve iki yaprağı birleştirdiğimiz ve bu yüzden başlangıç noktasında θ = 4π θ = 0 'a denk olduğu, z = 0 dallanma noktası etrafında ikinci bir döngü yapmak zorundayız. Başka bir deyişle, dallanma noktası etrafında z iki tam tur yaptıkça, z 'nin w-düzlemindeki görüntüsü sadece bir tur çemberi dolaşır. Türevin formel tanımı olduğunu gösterir. Bundan, f 'nin türevinin var olduğunu ve türevin Riemann yüzeyi üzerindeki z = 0 dışında her yerde sonlu olduğunu çıkarabiliriz (yani, f, z = 0 dışında holomorftur). Yukarıda tartışılan fonksiyonu Riemann yüzeyi için oluşturulabilir? Yeniden, z-düzleminin iki kopyasıyla başlarız; ancak bu sefer her birisi gerçel doğru parçası boyunca, z = -1 'den z = 1 'e, kesilir – bunlar g(z) 'nin iki dallanma noktası olur. Bunlardan birisini yine yukarıdan aşağıya çeviririz ve böylece sanal eksenler ters yönlü olurlar. İki yaprağın karşılık gelen kenarları tekrar birleştirilir. g 'nin bu yüzey üzerinde tek değerli olduğu z = 1 merkezli birim yarıçaplı bir çember üzerinde döngü yapılarak doğrulanabilir. Birinci yapraktaki z = 2 noktasından başlanır ve z = 0 'daki kesikle karşılaşmadan çember etrafında yarım dönülür. Bu kesik bizi ikinci yaprağa gitmeye zorlar böylece z, z = 1 dallanma noktası etrafında bir tam döngü, w ise bir yarım döngü yapmıştır. w 'nun işareti terse döndürülmüştür (e = -1 olduğundan) ve yolumuz bizi yüzeyin ikinci yaprağındaki z = 2 noktasına götürmüştür. Başka bir yarım tur daha yaptığımızda, z = 0 olduğu kesiğin diğer tarafıyla karşılaşırız ve son olarak başlangıç noktamıza (birinci yapraktaki z = 2 noktasına) dallanma noktasının etrafında iki tam döngü yaptıktan sonra ulaşırız. Bu örnekte θ = arg(z) 'yi etiketlemenin doğal bir yolu birinci yaprakta -π < θ ≤ π, ikinci yaprakta π < θ ≤ 3π almaktır. İki yapraktaki sanal eksenler ters yönde hareket ederler böylece saat yönünün tersi anlamındaki pozitif rotasyon, kapalı bir kontür bir yapraktan diğerine geçerken, korunur (ikinci yaprak yukarıdan aşağıyadır). Bu yüzey üç boyutlu uzayda yaprakları xy-düzlemine paralel olacak şekilde gömülsün. O zaman yüzey içinde iki kesiğin birleştiği dikey bir delik oluşacaktır. Peki kesikler negatif eksen boyunca z = -1 'den sonsuza ve pozitif eksen boyunca z = 1 'den sonsuza ta ki kesikler birleşinceye kadar yapılırsa ne olur? Yine bir Riemann yüzeyi elde edilir ancak bu sefer "delik" yatay olur. Topolojik olarak bu iki Riemann yüzeyi birbirine denktir – ikisi de cinsi 1 olan yönlendirilebilir iki boyutlu yüzeylerdir. Karmaşık düzlemin kontrol teorisinde kullanımı Kontrol teorisinde, karmaşık düzlemin bir kullanımı ise 's-düzlemi'dir. Bir sistemin davranışını açıklayan denklemin (karakter denklemi) köklerini grafiksel olarak görüntülemek için kullanılır. Denklem normalde Laplace dönüşümünün parametresi olan 's' değişkenli bir polinom olarak ifade edilir. 's'-düzlemi denmesinin nedeni de budur. Karmaşık düzlemin bir başka kullanımı ise Nyquizt durağanlık kriteriyle olmaktadır. 'z-düzlemi', s-düzleminin Laplace dönüşümü yerine z-dönüşümünün kullanıldığı bir ayrık-zaman versiyonudur. "Karmaşık düzlem"in diğer anlamları Bu maddenin önceki bölümleri karmaşık düzleme karmaşık sayıların geometrik bir analoğu olarak davranmıştır. "Karmaşık düzlem"in bu tür kullanımı uzun ve matematiksel olarak zengin bir tarihe sahipse de, "karmaşık düzlem"in matematiksel kavram olarak kullanıldığı tek alan bu değildir. İhtimal dahilinde en az üç farklı anlam daha var: Ayrılmış-karmaşık düzlem olarak da bilinen 1+1 boyutlu Minkowski uzayı da, kartezyen düzlemdeki (x, y) noktasıyla kolaylıkla bağdaştırılabilen iki gerçel bileşene sahip cebirsel ayrılmış-karmaşık sayılar bağlamında bir "karmaşık düzlem"dir. Gerçeller üzerindeki dual sayılar kümesi de kartezyen düzlemin (x, y) noktaları ile birebir ve örten olarak değiştirilebilir ve "karmaşık düzlem"in bir diğer örneğini temsil eder. Karmaşık sayıların kendileriyle kartezyen çarpımı olan C×C vektör uzayı da koordinatları karmaşık sayılar olan iki boyutlu vektör uzayı bağlamında bir "karmaşık düzlem"dir. Ayrıca bakınız Takımyıldız diagramı Laplace dönüşümü Riemann küresi Riemann yüzeyi S düzlemi Z-dönüşümü Dış bağlantılar MathWorld'deki Argand Diagramı bilgisi Notlar Kaynakça Francis J. Flanigan, Complex Variables: Harmonic and Analytic Functions, Dover, 1983 ISBN 0-486-61388-7. Gino Moretti, Functions of a Complex Variable, Prentice-Hall, Inc., 1964. H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., 1948; reprinted (1973) by Chelsea Publishing Company ISBN 0-8284-0207-8. E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, fourth edition, Cambridge University Press, 1927. Kategori:Karmaşık analiz Kategori:Karmaşık sayılar Kategori:Kontrol teorisi
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri