Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Michaelis-Menten kinetiği

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
küçükresim|Michaelis-Menten kinetiğine uyan bir enzim reaksiyonu için doyum eğrisi (bu örnekte V=3.4 ve K=0.4. Biyokimyada Michaelis–Menten kinetiği, enzim kinetiğinin en basit ve en iyi modellerinden biridir. Alman biyokimyacı Leonor Michaelis ve Kanadalı hekim Maud Menten'e atfen adlandırılmıştır. Bu model, enzim reaksiyon hızını betimleyen bir denklem şeklindedir, reaksiyon hızı , bir substrat S'nin konsantrasyonu cinsinden ifade edilir: Burada, sistemden elde edilebilecek en yüksek reaksiyon hızıdır, enzimi doyurucu substrat konsantrasyonunda bu hıza ulaşılır. Michaelis sabiti , reaksiyon hızının 'ın yarısı olduğu substrat konsantrasyonudur. Genelde tek substratlı biyokimya reaksiyonlarının Michaelis–Menten kinetiğine uyduğu varsayılır, modelin varsayımlarına bakılmadan. Model küçükresim|E enzimi, S substratı, ES kompleksi ve P ürünü için zamana bağlı konsantrasyon değişimleri. 1903'te Fransız fizikokimyacısı Victor Henri, enzim reaksiyonların enzim ile substrat arasında bir bağ oluşması ile başladığını keşfetti. Onun bu çalışması, en basit enzimatik reaksiyon mekanizmalarından birinin kinetiği'ni çalışan Amerikalı biyokimyacı Leonor Michaelis ve Kanadali hekim Maud Menten tarafından devam ettirildi. Bu iki araştırmacı, invertaz tarafından sükrozun glukoz ve fruktoza dönüştüğü hidroliz reaksiyonunu inceliyordu. 1913'te bu reaksiyon için bir matematik model önerdiler. Modelde bir E enzimi bir S subtratına bağlanıp bir enzim-substrat kompleksi oluşturmakta, bu da enzim artı bir P ürününe dönüştürülmekteydi. Şematik olarak bu dönüşüm şöyle gösterilebilir: burada , ve hız sabitleridir, S ve ES arasındaki çifte oklar enzim-substrat bağlanmasının tersinir olduğunu belirtir. Bazı varsayımlar ile – enzim konsantrasyonun substrat konsantrasyonundan çok daha düşük olması gibi - ürün oluşum hızı şu denklemle gösterilebilir: Reaksiyon hızı ] ile birlikte artar, asimptotik olarak maksimum hız 'a yaklaşır ('da tüm enzim molekülleri substrata bağlıdır). Dolayısıyla , burada enzim konsantrasyonudur. bir enzim molekülü tarafından bir saniyede substrata dönüştürülen maksimum substrat molekül sayısıdır; dönüşüm sayısı (veya etkinlik sayısı veya turnover sayısı) olarak adlandırılır. Michaelis sabiti reaksiyon hızının yarı-maksimum olduğu substrat konsantrasyonudur ve substratın enzime bağlanma afinitesinin (ilgisinin) bir ölçüsü sayılır. Küçük bir yüksek bir afinite olduğuna işaret eder, yani reaksiyon hızı 'a daha çabuk ulaşır. Uygulamalar Parametreler enzimden enzime büyük farklılık gösterebilir: sabiti enzimin substratı ürüne dönüştürmekte ne kadar verimli olduğunun bir göstergesidir. Teorik üst sınırı {nowrap|10 – 10 /M.s}} 'dır; bu değere yakın olan fumaraz gibi enzimler için "süper verimli" terimi kullanılır. Bu model, enzim-substrat etkileşimi dışında çeşitli biyokimyasal durumlar için de kullanılır, antijen-antikor bağlanması, DNA-DNA hibridizasyonu, ve protein-protein etkileşimi gibi. Jenerik bir biyokimyasal bir reaksiyonun karakterizasyonu için de kullanılabilir, Langmuir denkleminin biyomoleküler molekül adsorpsiyonu jenerik olarak modellemek için kullanılması gibi. Michaelis-Menten kinetiği biyokimyasal reaksiyonlar dışında çeşitli alanlarda da kullanılmıştır, akciğer alveollerinden toz giderilmesi, popülasyonlarda biyolojik tür sayısının zenginliği, kan alkolünün giderilmesi, ve bakteriyel faj enfeksiyonu gibi. Türetme Kütle etkisi kanunu, bir reaksiyon hızının reaktanların konsantrasyonların çarpımı ile orantılı olduğunu belirtir. Bu kanun uygulanarak reaktanların miktarındaki zamanına bağlı değişimi ifade eden dört doğrusal olmayan adi diferansiyel denklem elde edilir: Bu mekanizmada E enzimi, sadece reaksiyonu kolaylaştıran bir katalizördür, dolayısıyla onun serbest ve bağlı halleri için toplam konsantrasyonu, , bir sabittir. Bu koruma yasası yukarıdaki ikinci ve üçüncü denklemlerin toplanmasıyla da elde edilebilir. Hızlı denge yaklaşımı Orijinal analizlerinde Michaelis ve Menten, substrat ile kompleksin kimyasal denge içinde olduklarını ve dolayısıyla olduğunu varsaymışlardır. Bu eşitlik ile enzim korunum kanunu birleştirilirse, kompleksin konsantrasyonu şuna eşittir: Burada enzim-substrat kompleksinin ayrışma sabitidir. Dolayısıyla, reaksiyonun hızı, yani P ürününün oluşum hızı şudur: Burada maksimum reaksiyon hızıdır. Sürekli hal yaklaşımı Sistemin alternatif bir analizi Britanyalı botanikçi G. E. Briggs ve Britanyalı genetikçi J. B. S. Haldane tarafından 1925'te yapıldı. Bu araştırmacılar, ürünün oluştuğu zaman ölçeğinde, ara ürün kompleksinin konsantrasyonunun değişmediğini varsaydılar; bu varsayım, "kararlı hâlimsilik varsayımı" (veya "kararlı hâl benzerliği varsayımı"; İng. quasi-steady-state assumption) veya "sahte kararlı hâl hipotezi" (pseudo-steady-state-hypothesis) olarak adlandırılır. Matematiksel olarak, bu varsayım anlamına gelir. Bu eşitlik ile enzim korunum kanun birleştirilince, ES kompleksin konsantrasyonu şudur: Burada , Michaelis sabiti olarak bilinir. Dolayısıyla reaksiyon hızı için şu sonuç çıkar: Varsayımlar ve sınırlamalar Denklemin türetmesindeki ilk adım, kütle etkisi kanununu kullanır, ki bu serbest difüzyona dayalıdır. Oysa, canlı bir hücrenin içinde yüksek bir protein konsantrasyonu vardır, sitoplazma sıvıdan çok bir jel gibi davranır, bu yüzden molekül hareketleri sınırlıdır ve reaksiyon hızları bundan etkilenir. Kütle etkisi kanunu heterojen ortamlar için geçerli olsa da, sitoplazmanın sınırlı hareket kinetiği özelliğinin bir fraktal olarak modellenmesi daha uygun bulunmuştur. İki yaklaşımla elde edilen reaksiyon hızı denklemleri benzerdir, aradaki fark, denge yaklaştırmasındaki sabitin olarak tanımlanması, kararlı hâlimsilik yaklaştırmasının ise 'yi kullanmasıdır. Ancak, bu iki yaklaşım farklı varsayımlara dayandırılmıştır. Michaelis-Menten denge analizinin doğru olması için substratın dengeye yaklaşma hızının ürün oluşumundan çok daha hızlı olması gerekir, veya daha kesin olarak, teriminin küçük olması gerekir. Buna karşın, Briggs-Haldane kararlı hâlimsilik analizinin doğru olması için teriminin küçük olması gerekmektedir. Dolayısıyla, onun geçerli olması için enzim konsantrasyonu substratınkinden çok daha az olmalıdır. Bu şart sağlanmasa dahi, eğer büyükse bu yaklaştırma geçerlidir. Hem Michaelis-Menten hem Briggs-Haldane analizinde, küçüldükçe yaklaştırmanın kalitesi iyileşir. Ancak, enzim reaksiyonlarının modellemesinde, varsayımlar gözden geçirilmeden genelde Michaelis-Menten kinetiğinin kullanılma eğilimi vardır. Sabitlerin belirlenmesi ve sabitlerinin belirlenmesi için tipik yöntem, farklı substrat konsantrasyonlarında bir seri enzim ölçümü yapılması ve reaksiyon ilk hızının ölçülmesidir. Burada 'ilk' teriminden kasıt, reaksiyon hızının başlangıçtan sonraki nispeten kısa bir süre içinde ölçülmesidir, bu süre zarfında enzim-substrat kompleksinin oluşmuş olduğu ama, substrat konsantrasyonun yaklaşık sabit olduğu, ve dolayısıyla denge veya kararlı hâlimsilik yaklaştırmasının geçerli olduğu varsayılır. Reaksiyon hızını konsantrasyona göre grafikleyince ve Michaelis-Menten denklemi ile doğrusal olmayan regresyon yaparak, parametreler elde edilebilir. Doğrusal olmayan regresyon yapmak için, eskiden bilgisayarlar mevcut değilken, denklemin doğrusallaştırılmasını sağlayan grafik yöntemler kullanılırdı: Eadie–Hofstee çizimi, Hanes–Woolf grafiği ve Lineweaver–Burk grafiği bunlardan bazılarıdır; Hanes–Woolf grafiği en hatasızıdır. Ancak, görselleştirme için faydalı olsalar da, her üç yöntem de verilerdeki hata dağılımını bozduğu için, doğrusal olmayan regresyonla sabitlerin bulunması kadar sağlıklı değildir. Buna rağmen, modern literatürde bu grafik yöntemler hâlâ kullanılmaktadır. Uzantılar Michaelis ve Menten, tek substratlı ve tersinmez ürün oluşumlu basit reaksiyonların kinetiğini incelediler. Bu teori daha sonra genişletilmiştir, kararlı hâlimsilik yaklaştırmasını daha karmaşık sistemler için de uygulayarak. Bazı örnekler aşağıda verilmiştir. Yarışmalı inhibisyon Bir bileşik, enzimin substrat bağlanma yerine bağlanıp enzimin reaksiyonu katalizlemesini engellerse, yarışmalı inhibisyon meydana gelir. Bu durumda inhibitör sistemin 'sini değiştirir, reaksiyon hızı şu şekilde değişir: burada görünür 'dir, I inhibitör bileşiktir, de onun ayrışma sabitidir. Yarışmasız inhibisyon Bir bileşik, enzim üzerinde substrat bağlanma yerinden farklı bir yere bağlanıp değerini değiştirirse, yarışmasız inhibisyon meydana gelir. Reaksiyon hızı şöyle değişir: burada . Kaynakça Kategori:Enzim kinetiği Kategori:Kimyasal kinetik Kategori:Adi diferansiyel denklemler Kategori:Kataliz
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri