Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Olasılık yoğunluk fonksiyonu

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir: üzerinde pozitif veya sıfır değerleri alır; üzerinde integral değeri bulunabilir; koşuluna uyar, yani eğri altındaki tüm alan bire eşittir. Xin a ve b değerleri arasındaki olasılık, yani şu ifade kullanılarak hesaplanır: Yani olasılık değeri f(x) integralini f(x) fonksiyonunu X=a ve X=b değerleri arasında entegrasyonu ile elde edilir. Örneğin: X rassal değişkeninin [4.3,7.8] aralığında olasılık şöyle bulunur: Ayrık dağılım ile sürekli dağılım arasındaki bağlantı Bu maddenin başlangıcında verilmiş olasılık yoğunluk fonksiyonu tanımın bir sürekli dağılım ile ilişkili değişkenin [a; b] aralığı ile ilişkili çift-değerli ayrık değişkenler seti kullanılarak yapılmıştır. Diğer bazı aralıklı rassal değişkenleri temsili, Dirac delta fonksiyonu aracılığı ile olasılığın yoğunluğun bulunması suretiyle de yapılabilir. Örneğin, bir çift-değerli her biri 1⁄2 olasılığı olan -1 ve 1 değerli bir rassal değişken ele alınsın. Bu değişkenle ilişkili olasılık yoğunluğu şöyle verilir: Daha genel olarak, eğer bir ayrık değişken reel sayılar arasından 'n' tane değişik değer alınsın; o halde bunlarla ilişkili olasılık yoğunluk fonksiyonu şudur: Burada değişken ait değerler olur ve bu değerlerle ilişkili olasılıklardır. Bu ifade bir ayrık değişken için istatistiksel özellikleri (örneğin ortalama, varyans, çarpıklık, basıklık) sürekli dağılım için geliştirilmiş formülleri kullanarak hesaba başlayarak sonuçların bulunmasını sağlar. Matematiksel olmayan olasılık yoğunluk tanımı Bir olasılık dağılımı için yoğunluk fonksiyonu ancak ve ancak yığmalı dağılım fonksiyonu F(x) mutlak süreklilik gösteriyorsa mümkündür. Bu halde F için nerede ise her yerde türev bulunabilir ve F için alınan birinci türev olasılık ile yoğunluk şöyle bulunur: Eğer bir olasılık dağılım için yoğunluk bulunması mümkün ise rassal değişken için her bir nokta değer (a) için olasılık 0 olacaktır. Her olasılık dağılımı için bir yoğunluk fonksiyonu bulunamaz. Başta ayrık rassal değişkenler için olasılık yoğunluk fonksiyonu yoktur. Hiçbir noktaya pozitif olasılık vermeyen, yani hiç aralık parçası olmayan Kantor dağılımı için de yoğunluk fonksiyonu bulunmaz. Bir yığmalı dağılım fonksiyonunun türevi ile olasılık yoğunluk fonksiyonu arasındaki ilişkinin karmaşık matematik biçimlerden biraz aranmış açıklaması istatistiksel fizik dalında geliştirilmiştir ve bu genellikle olasılık yoğunluk fonksiyonu tanımı olarak kullanılabilir. Bu tanım şöyle yapılır: dt sonsuz derece küçük bir sayı olarak alınsın. in (t, t + dt) aralığında bulunacağı ifadesine eşittir; yani Moment, beklenen değer ve varyans Sürekli X rassal değişkeni için ninci momenti E(X) gösterilip şu ifade ile verilir: Beklenen değer o zaman birinci moment olup şöyle verilir: Varyans ise şöyle verilir: Bu ifade açılırsa olur. Çoklu değişkenlerle ilişkili olasılık fonksiyonu Sürekli rassal değişkenler olan için, bu değişkenlerinin tümünü kapsayan rassal vektör için bir olasılık yoğunluk fonksiyonu tanımlamak mümkündür. Buna ortak olasılık yoğunluk fonksiyonu adı verilir. n değişkenli bu yoğunluk fonksiyonu matematik notasyon biçimleriyle şöyle tanımlanır. değişkenlerin değerleriyle tanımlanan n-boyutlu uzayda bulunan herhangi bir D sahası alınsın; bu değişken setinin D sahası içine düşen bir realizasyonun bulunacağının olasılığı şöyle verilir: i=1, 2, ...,n için tek bir değişken ile ilişkili olasılık yoğunluk fonksiyonu olarak ifade edilsin. Bu olasılık yoğunluğu rassal değişkenlerle ilişkili olasılık yoğunluklarından n - 1 tane diğer değişkenlerle entegrasyonu suretiyle elde edilir: Bağımsızlık Sürekli rassal değişken olan birbirlerinden bağımsız olmaları için koşuluna tam olarak uymaları gerekir. Eğer n elemanlı bir rassal değişken vektörünün ortak olasılık dağılımı tek bir değişken için n değişik fonksiyona faktörize edilebilirse; yani ise, o halde, n değişkenin hepsi birbirlerinden bağımsızlık gösteriyor demektir. Bu halde her bir fonksiyon için marjinal olasılık yoğunluk fonksiyonu şöyle verilir: Örneğin Çoklu boyutlu olasılık yoğunluk fonksiyonlarının verilen tanımını biraz daha açığa kavuşturmak için basit bir örneğin alınsın; bu iki bilinmeyenli bir rassal vektör olsun. Koordinatları olan iki boyutlu rassal vektör, olarak isimlendirilsin. Pozitif x ve pozitif y kuadrantları içinde için olasılık elde etmek şöyle olur. Kaynakça fr: İlk defa olasılık kuramı ile değişkenler hesabını bileştiren temel eser. de:Olasılık kuramının ilk defa modern ölçü-teorisi temeline konulması. İngilizce tercümesi Foundations of the Theory of Probability olarak 1950de yayınlanmıştır. Ayrıca bakınız Olasılık dağılımı Olasılık kütle fonksiyonu Rassal değişken Yoğunluk fonksiyonu
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri