Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Plazma

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
küçükresim|250px|sağ|Bir plazma lambası Plazma (Grekçe πλάσμα, Fransızca plasma "biçimlendirilebilir madde"), gaz haldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal tepkimenin kontrollü etkileşim sürecine verilen genel ad. Daha kolay bir tanımla; atomun elektronlardan arınmış halidir. Plazma, kimya ve fizikte iyonlaşmış gaz anlamına gelmektedir. İyonlaşmış gaz için kullanılan plazma sözcüğü 1920'li yıllardan beri fizik yazınında yer etmeye başlamıştır. Kendine özgü niteliklere sahip olduğundan, plazma biçimi maddenin katı, sıvı ve gaz biçiminden ayrı olarak incelenir. Katı bir cisimde cismi oluşturan moleküllerin hareketi çok azdır, moleküllerin ortalama hareket enerjisi herhangi bir yöntemle (örneğin ısıtarak) arttırıldığında cisim ilk önce sıvıya, sonra da gaza dönüşür. Gaz fazında elektronlar gayet hızlı hareket ederler. Eğer gaz halinden sonra da ısı verilmeye devam edilirse iyonlaşma başlayabilir, bir elektron çekirdek çekiminden kurtulur ve serbest bir elektron uzayı meydana getirerek maddeye yeni bir biçim kazandırır. Atom bir elektronu eksilmiş ve net bir pozitif yüke sahip olmuş olacaktır. Yeterince ısıtılmış gaz içinde iyonlaşma defalarca tekrarlanır ve serbest elektron ve iyon bulutları oluşmaya başlar. Ama bazı atomlar nötr kalmaya devam eder. Oluşan bu iyon, elektron ve nötr atom karışımı; plazma olarak adlandırılır. İyonlaşma durumu, en az bir elektronun atom ya da molekülden ayrıldığı anlamına gelir. Serbest elektrik yükü sayesinde plazma yüksek bir elektrik iletkenliğine kavuşur ve elektromanyetik alanlardan kolaylıkla etkilenir. Atmosferin üstünde, manyetosferde, özellikle kutuplara yakın bölgelerde görülen auroralar, güneş rüzgârından kaynaklanan yüklü parçacıklarla çarpışan oksijen atomlarının iyonize olması ile oluşurlar. Evren'de madde dört halde bulunur. Bunlar katı, sıvı, gaz ve plazma halidir. Mikroskobik açıdan plazma, sürekli hareket eden ve etkileşen yüklü parçacıklar topluluğu olarak söylenir. Plazma içinde nötr atom ya da moleküllerin olması plazma halini değiştirmez. Kimyasal tepkimeleri oldukça hızlıdır. Çünkü plazma maddenin en sıcak halidir ve elektronların çekirdek ile olan bağları güçsüz dür. Plazmalar soğuk ve sıcak plazmalar olarak ayrılabilir. Yıldızlar sıcak plazmaya örnekken floresan soğuk bir plazmadır. Bir plazma, gaz ısıtılarak veya bir lazer ya da mikrodalga jeneratörü ile uygulanan güçlü bir elektromanyetik alana tabi tutularak oluşturulabilir. Bu elektron sayısındaki düşüş ya da artışlar, iyonlar adı verilen pozitif veya negatif yüklü parçacıklar oluşturur ve eğer varsa moleküler bağların ayrışmasına eşlik eder. Bu yük taşıyıcılarının önemli sayıda varlığı plazmayı elektriksel olarak iletken hale getirir, böylece elektromanyetik alanlara şiddetle tepki verir. Gaz gibi plazmanın da bir kap içine konulmadıkça belirli bir biçimi veya belirli bir hacmi yoktur. Gazdan ayrı olarak, bir manyetik alanın etkisi altında lifler, kirişler ve çift katmanlı yapılar oluşturabilmektedir. Plazma sıradan maddenin evrendeki en bol şeklidir; çoğu düşük yoğunluktaki bölgelerde, özel küme içi ortamlarda ve Güneş de dahil olmak üzere yıldızlarda madde bu şekilde bulunmaktadır. Plazmaların dünyadaki yaygın şekli ışıklı reklam tabelalarında görülür. Plazma ile ilgili çoğu özellik, kontrollü nükleer füzyon ve füzyon gücü ile ilgili araştırmalar sonucun bulunmuştur. Bunun nedeni plazma fiziğinin nükleer füzyonun anlaşılması için gerekli temeli sağlamasıdır. Özellikleri ve Parametreler sağ|küçükresim|256x256px|Dünya'nın kutuplara yakın bölgelerdeki uzaya fışkırır oksijen, helyum ve hidrojen iyonları gösteren, Dünya'nın plazma çeşmesinin Sanatçı sunumu. Kuzey kutbunun yukarısında gösterilen soluk sarı alan, uzaya Dünya'dan geçmiş gazı temsil eder; atmosfere dökülen plazma enerjisi olan yeşil alan kuzey ışıklarıdır. Tanım Plazma, kolayca gevşek bağlı olmayan pozitif ve negatif parçacıkların elektriksel olarak nötr ortamı şeklinde söylenmesidir. (yani bir plazmanın genel yükü yaklaşık sıfırdır). Bağlanmamış olmalarına karşın bu parçacıkların güçlerin karşılaşması konusunda tamamen serbest olmadıklarını belirtmek önemlidir. Harekete geçtiklerinde, manyetik alanlarla elektrik akımı oluşturur, ve bunun sonucu olarak, birbirlerinin alanlarından etkilenirler. Bu onların çok serbestlik derecesiyle ortak davranışlarını yönetir. Bir tanımın üç ölçütü olabilir.: Plazma Yaklaşımı: Yüklü parçacıklar sadece en yakın parçacıkla etkileşimden çok, parçacık etkisi çok yakın yüklü parçacıklarla birbirine yeterince yakın olmalıdır (bu kolektif etkiler plazmanın ayırt edici özelliğidir). Belirli bir parçacığın etki alanı içinde yük taşıyıcılarının sayısı yüklü parçacıklarıyla (yarıçapı Debye tarama uzunluğu Debye küresi denir) toplu davranış sağlamak için birlik daha yüksek olduğunda plazma yaklaşımı geçerlidir. Debye küresinde parçacıkların ortalama sayısı plazma parametresi tarafından verilir, "Λ" (Yunan alfabesinde büyük Lambda), Toplu Etkileşimler :Debye tarama uzunluğu plazmanın fiziksel boyutuna göre kısadır. Bu kriter, plazma hacmi içinde meydana gelebilecek sınırlı etkilerin kenarlarından daha önemli olduğu anlamına gelir. Bu kriter gerçekleştiğinde, plazma yarı nötr olur. Plazma Frekansı: Elektron plazma frekansı (elektron plazma salınımlarının ölçülmesi) (elektronlar ve nötr partiküller arasındaki çarpışma sıklığının ölçülmesi) elektron çarpışma sıklığı ile karşılaştırıldığında büyüktür. Bu durum geçerli olduğu zaman, elektrostatik etkileşimler, sıradan gaz kinetik işlemlerden daha baskındır. Değişken Parametreler Plazma parametreleri büyüklükte birçok ayrı değer alabilir, ancak ayrı parametreler ile plazmaların özellikleri çok benzer olabilir. Aşağıdaki grafik sadece geleneksel atom plazmalar ve kuark gluon plazmalar gibi değil, egzotik fenomeni de göz önünde bulundurur küçükresim|250x250px|Plazmaların aralığı. Yukarıda yoğunluk artar, sağa doğru sıcaklık artar. metal içindeki serbest elektronlar, elektron plazma olarak kabul edilir. İyonlaşma derecesi Plazma için, iyonlaşma gereklidir. Terim olarak "plazma yoğunluğu" genellikle "elektron yoğunluğu"nu kapsar, hacim başına serbest elektron sayısına karşılık gelir. Bir plazmanın iyonlaşma derecesi, atom oranının elektron kaybetmiş ya da kazanmış olduğu sıcaklıkla kontrol edilir. Hatta parçacıklar %1 daha az iyonize edildiğinde, kısmen iyonize gazı, plazma özelliğini elde edebilir. (yani manyetik alanlara tepki ve yüksek elektriksel iletkenlik.). İyonlaşma derecesi,, olarak, olarak tanımlanır. iyon sayısı yoğunluğu nötral atomlarının sayısı yoğunluğudur.Elektron yoğunluğu, iyonların ortalama şarj durumu aracılığıyla ilişkilendirilir. elektron sayısı yoğunluğudur. Sıcaklık Plazma sıcaklığı genel olarak K veya elektrovoltla ölçülür ve partikül başına termal kinetik enerjinin ölçümü ile elde edilir. Çok yüksek sıcaklıklara genelde plazmanın bir tanımlayıcı özelliği olan iyonlaşmayı sürdürmek için ihtiyaç vardır. Plazma iyonlaşma derecesi iyonlaşma enerjisine göre (yoğunluğu ile daha zayıf) elektron sıcaklığı ile belirlenir, bu ilişki Saha denklemi olarak adlandırılır. Düşük sıcaklıklarda, iyonlar ve elektronlar bağlı duruma gelir -atom- ve sonunda plazma gaz haline gelme eğilimindedir. Çoğu durumda elektronlar sıcaklığı nispeten iyi tanımlanmış termal dengeye yakındır, Maxwell enerji dağıtım işlevinde önemli bir sapma olduğunda bile; örneğin, UV radyasyon, enerji yüklü parçacıkları ya da kuvvetli elektrik alanları. Kütledeki büyük farktan dolayı, iyonlar veya nötr atomlar denge haline gelene kadar elektronlar daha hızlı termodinamik dengeye gelir. Bu nedenle, iyon sıcaklığı (genellikle daha düşük) ile elektron sıcaklığı çok farklı olabilir. Bu iyonlar ortam sıcaklığına yakın, genellikle zayıf iyonize teknolojik plazmalarda yaygındır. Termal ve Termal Olmayan Plazmalar Elektronlar, iyonlar ve nötrler, sıcaklıklarına göre, plazmalar "termal" ya da "termal olmayan" olarak sınıflandırılır. Termal plazmaların aynı sıcaklıkta elektron ve ağır parçacıkları var, yani birbirleri ile termal dengede bulunmaktadırlar. Öte yandan termal olmayan plazmalar, daha düşük sıcaklıkta (bazen oda sıcaklığı) elektronlar fazla "sıcak" iken iyonlar ve nötrlere sahiptir. . Bir plazma bazen neredeyse tamamen iyonlaşmışsa "sıcak" veya gaz moleküllerinin (örneğin %1) yalnızca küçük bir bölümü iyonlaşmışsa "soğuk" diye adlandırılır, ancak "sıcak plazmanın" ve "soğuk plazmanın" diğer tanımları yaygındır. Hatta bir "soğuk" plazmada elektron sıcaklığı tipik olarak birkaç santigrat derecedir. "Plazma teknolojisi" ("teknolojik plazmalar") olarak kullanılan plazmalar genellikle gaz moleküllerinin sadece küçük bir kısmının iyonlaşması anlamında soğuk plazmalardır. Plazma Potansiyeli sağ|küçükresim|463x463px|Yıldırım, yeryüzündeki mevcut plazma örneğidir.Tipik olarak, yıldırım, 100 milyon voltta 30.000 amper boşaltır.Yıldırımdaki plazma sıcaklıkları yaklaşır ve elektron yoğunlukları aşabilir 10 m. Plazmalar çok iyi elektrik iletkenleri olduğundan, elektrik potansiyelleri önemli bir rol oynamaktadır. Potansiyel yüklü parçacıklar arasındaki boşlukta ortalama var olan bağımsız potansiyele "plazma potansiyeli" veya "uzay potansiyeli" denir. Eğer bir elektrot plazma içine takılırsa, potansiyeli nedeniyle genellikle Debye kılıf denir ve plazma potansiyelin altında önemli ölçüde yalan olur. Plazmaların iyi elektrik iletkenliği onların elektrik alanlarını çok küçük hale getirir. Bu negatif yük yoğunluğu plazmanın,büyük miktarlarda üzerindeki pozitif yüklerin eşit olduğunu söyleyen "sözde tarafsızlık" kavramı ile sonuçlanır, fakat ölçekte Debye uzunluğu dengesizliği şarj edilebilir. Bu özel durumda çift tabaka oluşturulmaktadır, yük ayırmada Debye uzunlukları onlarca uzayabilir. Potansiyelleri ve elektrik alanlarının büyüklüğü sadece net yoğunluğunu bulmak için başka yollarla tespit edilmelidir. Genel bir örnek, Boltzmann elektronlar arasındaki bağlantıyı karşıladığını farz etmiştir: Bu elektrik alanındaki yoğunluğu hesaplamanın bir diğer yolu: Yarı nötr olmayan bir plazma üretmek mümkündür. Örneğin, bu elektron ışınında sadece negatif yük vardır. Bir nötr olmayan plazmanın yoğunluğu genellikle çok düşük olmalıdır, ya da çok küçük olmalıdır, aksi takdirde itici elektrostatik kuvvet tarafından harcanmış olur. Astrofizik plazmalardaki Debye taraması doğrudan üzerindeki plazmayı etkileyen alanları etkiler, yani Debye uzunluğundan daha büyük mesafeleri. Ancak, yüklü parçacıkların varlığı plazma oluşturmaya neden olur ve manyetik alandan etkilenebilir. Bu ve bu tür plazma çift tabakaların nesli olarak son derece karmaşık davranışlara neden olabilir, amacı Debye uzunlukları üzerindeki yükü ayırmak olan. Dış ve kendinden oluşturulan manyetik alanlar ile etkileşen plazmaların dinamikleri manyeto hidro dinamiklerinin akademik disipliniyle incelenir. Mıknatıslama Yüklü parçacıkların hareketini etkilemek için yeterince güçlü manyetik alan plazmanın mıknatıslandığı söylenebilir. Ortak bir nicel kriter ortalama bir parçacık bir çarpışma yapmadan önce manyetik alan etrafında en az bir dönüş tamamlar, yani, , "elektron dönme frekansı" dır ve i"elektron çarpışma hızı" dır. Genellikle iyonlar yokken elektronların mıknatıslanması durumudur. Anizotropik olan manyetize plazmaların, manyetik alana paralel yönde ona dik olan ayırıcı özellikleri vardır.Plazmalardaki elektrik alanlar yüksek iletkenlikleri genellikle küçük olsa da, manyetik alanda hareket eden bir plazma ile bağlantılı elektrik alan( elektrik alanı, hız, vemanyetik alan), tarafından verilmiş ve Debye koruyucuyu etkilemez Plazma ve Gaz Fazların Karşılaştırılması Plazma genellikle katı, sıvı ve gazlardan sonra maddenin dördüncü hali olarak adlandırılır.Bunlardan ve maddenin diğer düşük enerji durumlarından ayrıdır. Yakından da kesin bir biçim veya hacme sahip olmaması ile gaz fazıyla benzer olmasına rağmen, aşağıdakiler de dahil birçok yolla farklılık gösterir: Ortak Plazmalar Plazmalar kütlece ve hacimce evrende sıradan maddeden uzak en yaygın fazdır.Esasen, yıldızlardan gelen uzaydan görünür ışıkta görünür dalga boyu aralığında, kuvvetli bir sıcaklığa sahip plazmalar bulunmaktadır. Evrendeki sıradan (veya baryonik) maddenin çoğu, X-ışınları gibi ışık saçar galaksiler arası ortamda bulunan plazmalar gibi, ama daha sıcak. Hannes Alfvén 1937 yılında, plazma evrene yayılırsa galaksi ile ilgili manyetik alan üretme kapasitesine sahip elektrik akımlarını taşıyabileceğini savundu. Nobel Ödülü'nü kazandıktan sonra şunları vurguladı.Buna karşılık mevcut bilimsel konsensüse göre evrendeki toplam enerji yoğunluğu yaklaşık %96 plazma ya da sıradan maddeden başka bir biçimde, ama soğuk karanlık madde ve karanlık enerji kombinasyonudur. Güneş ve tüm yıldızlar, plazma ile dolu yıldızlararası uzayda ve galaksiler arası uzayda da plazma yapabilir. Doğrudan görünmez karadeliklerin bile iyonize madde artışı tarafından körüklendiği düşünülmektedirve aydınlık püskürtülen plazma astrofizik jetleri ile ilişkilidir, mesela M87 adlı jet 5000 ışık yılı uzanır,, Güneş sistemimizde, gezegenler arası uzay Güneş Sistemi dışında Güneş'ten uzanan Güneş Rüzgâr plazma ile doludur. Ancak, sıradan maddenin yoğunluğunun ortalaması karanlık madde veya karanlık enerjiye göre çok daha yüksektir. Plazma olmayan Jüpiter gezegeni hesapları, Plüton’un yörüngesi içinde hacmi ve kütlesi yaklaşık %0.1'dir. Sırayla onlar plazma çok ağır negatif iyon bileşeni gibi hareket edebilir, böylece bir plazma içindeki toz ve küçük taneler de net bir negatif yükü bulur (bknz. tozlu plazmalar). Karmaşık Plazma Olayları Plazmaları yöneten temel denklemlerin nispeten basit olmasına rağmen, plazma davranışı olağanüstü değişik ve incedir: basit bir modelden beklenmeyen bir davranış ortaya çıkması karmaşık bir sistemin tipik özelliğidir. Bu tür sistemler düzenli ve düzensiz davranışı arasındaki sınırda basit, düz, matematiksel yöntemler ya da rastgelelik yoluyla tarif edilemez. Uzunluk ölçeklerinde geniş bir yelpazede ilginç mekansal özelliklerinden kendiliğinden oluşan plazma karmaşıklığının bir tezahürüdür. Mesela özellikleri çok ilginçtir, çünkü bunlar çok keskin mekansal aralıklı (özellikler arasındaki mekansal özellikleri kendilerinden çok daha büyük) ya da fraktal biçimlidir. Bu özelliklerin birçoğu laboratuvarda incelenmiş ve daha sonra evrende kabul edilmiştir. Plazmadaki karmaşıklığın ve karmaşık yapıların örnekleri şunlardır: Filamentasyon Aynı zamanda Birkeland akımlar olarak da bilinen çizgiler veya dize benzeri yapılar,birçok plazmada görülen plazma topu, aurora, yıldırım, elektrik arkları, güneş patlamaları ve süpernova kalıntıları gibi,,,,. Bazen büyük akım yoğunlukları ile ilişkilidir ve manyetik alan ile etkileşim manyetik halat yapısını oluşturabilir. Atmosfer basıncında yüksek güçlü mikrodalga analizi, aynı zamanda lif yapıların oluşmasına yol açar. Filamentasyon aynı zamanda kendi kendine odaklanan bir yüksek güçlü lazer darbesine değinmektedir. Yüksek güçlerde, kırılma indisinin doğrusal olmayan bir kısmı önemli hale gelir ve lazere odaklanan ters tepki lazer kenarlarında daha parlak olan lazer ışının merkezinde yüksek bir kırılma indeksine neden olur. Sıkı odaklı lazer plazma yüksek tepe parlaklığına (ışıma) sahiptir. Plazma daha düşük bir kırılma indisine sahiptir ve lazer ışınının odak dışı kalmasına sebep olur. Kırılma endeksi, odaklama ve odaktan uzaklaşma plazma etkileşimi uzunluğu kilometre, mikrometre olabilir ve plazma içinde uzun bir lif oluşumunu sağlar. İpliklenmenin ilginç bir yönü, plazma iyonize elektron etkisini odaktan uzaklaştırmasından dolayı göreceli olarak düşük iyon yoğunluğu oluşturmasıdır. Şoklar veya Çift Katmanlar Plazma özellikleri bir şok (hareketli) veya (sabit) çift katmanlı varlığında iki boyutlu bir tabaka boyunca (birkaç Debye uzunluğu içinde) hızla değişir. Çift katmanlar tabaka boyunca büyük bir potansiyel farkına neden olur, ancak katmanın dışında bir elektrik alanı oluşturmaz, lokalize şarj ayırma içerir. Çift tabakalar farklı fiziksel özelliklere sahiptir, bitişik plazma bölgelerini ayırırlar ve genellikle akım taşıyan plazmalarda bulunurlar. İyonları ve elektronları hızlandırırlar. Elektrik Alanları ve Devreler Bir plazmanın yarı tarafsızlığı, o plazma akımının elektrik devrelerini kendilerine kapatır. Bu tür devreler Kirchhoff'un devre yasalarını takip eder ve indüktans direncine sahiptirler. Bu devreler, genel olarak, tüm devreye bağımlı bir plazma bölgesinde güçlü bir şekilde eşlenmiş bir sistem ile düzeltilirler. Bu durum sistem elemanları ile aralarında doğrusal olmayan güçlü bir karmaşıklığa neden olur. Elektrik plazma mağazaları indüktif (manyetik) enerji devreleri ve devrelerin kesilmesi gerektiğinde, örneğin bir plazma istikrarsızlığında, endüktif enerji plazma ısıtma ve ivme olarak piyasaya sürülür. Bu güneş tacında gerçekleşen ısıtma için ortak bir açıklamadır. Elektrik akımları, ve özellikle de (genel olarak "Birkeland akımları" olarak ifade edilmektedir) manyetik alan hizalı elektrik akımları ile, yeryüzünde gözlenen plazma filamentleri elde edilir. Hücresel Yapı Keskin eğilimleri olan dar yaprak hücre benzeri bölgelerde sonuçlanan, mıknatıslanma yoğunluğu ve sıcaklık gibi farklı özelliklere sahip bölgeler ayrı olabilir. Örnekler; manyetosfer, helyosfer ve heliosferik akım levhası. Hannes Alfvén yazdı: "Kozmolojik açıdan bakıldığında, yeni uzay araştırmalarında en önemli keşif büyük bir ihtimalle hücre yapısıdır. Yerinde ölçümler için erişilebilir uzayın her bölgesinde görüldüğü gibi, 'hücre duvarları, farklı mıknatıslanma, sıcaklık, yoğunluk vb' elektrik akımlarını bölecek bir dizi levha vardır." Kritik iyonlaşma hızı Kritik iyonlaşma hızı bir iyonize plazma ve kaçar bir iyonlaşma işlemi gerçekleştiğinde bir nötr haz ile arasındaki göreceli hızdır. Kritik iyonlaşma işlemi iyonlaşmayı ve plazma termal enerjili bir hızlı akış hazın kinetik enerjisinin dönüştürülmesi için gereken genel bir mekanizmadır. Genel olarak kritik olaylar sistemlerde tipik ve keskin bir mekansal ya da zamansal özelliklere neden olabilir. Aşırı Soğuk Plazma Aşırı soğuk plazma kaçmak için yeterli dış elektronlarını vererek atomuna iyoniza için başka bir lazer kullanarak daha sonra yakalama ve nötr atomuna soğutma için 1mK ya da daha düşük sıcaklıklara, ve bir manyeto-optik uzak (motor) oluşturulan üst iyonunun elektriksel çekimidir. Aşırı soğuk plazmanın bir avantajı, boyutu ve elektron sıcaklığı dahil olmak üzere karakterize edilmiş ve ayarlanabilir başlangıç koşullarının olmasıdır. İyonlaştırıcı lazerin dalga boyunu ayarlayarak, kurtarılmış elektronların kinetik enerjisi 0.1 K, lazer darbesinin frekans bant genişliği ile belirlenen limit gibi düşük ayarlanmış olabilir. İyonları nötr atomların milikelvin sıcaklıkları miras olarak, ama hızla bozukluğu ısıtma (DISH) kaynaklı olarak bilinen bir süreç yoluyla ısıtılır. Bu tip denge dışı aşırı soğuk plazmalar bu şekilde hızla gelişir ve birçok ilginç olay sergiler. Güçlü bir ideali olmayan plazmanın metastabl devletlerin biri heyecanlı atomların yoğunlaşması üzereni oluşturan Rydnerg konudur. Nötr Olmayan Plazma Güç ve elektrik kuvvet aralığı ve plazmaların iletkenliği genellikle herhangi bir bölgede pozitif ve negatif yüklerin yoğunlukları (yarı tarafsızlık)nın eşitliğiyle sağlanır. Yük yoğunluğunun önemli bir fazlası ile bir plazma ya da uç bir durumda, nötr olmayan plazma olarak adlandırılan bir tür oluşur. Bu gibi bir plazma içinde, elektrik alan baskın bir rol oynamaktadır. Örnekler parçacık ışınları, Penning tuzağındaki bir elektron bulutu ve pozitron plazmalardır. Tozlu plazma / Tane plazması Tozlu plazma (genellikle uzayda bulunan) minik toz yüklü parçacıkları içerir. Toz parçacıkları yüksek yükler kazanır ve birbirleri ile etkileşirler. Daha büyük parçacıklar içeren bir plazmaya tane plazma denir. Laboratuvar koşullarında, tozlu plazmalara karmaşık plazmalar denir. Geçirimsiz plazma Geçirimsiz plazma gazı veya soğuk plazma, geçirgen olmayan bir katı gibi davranır ve fiziksel olarak itilebilir, termal bir plazma türüdür. Soğuk gaz ve termal plazma etkileşimi kısaca reaktör duvarlarından füzyon plazma yalıtımında olası uygulamalar 1960'lar ve 1970'lerde Hannes Alfven liderliğindeki bir grup tarafından incelenmiştir.Ancak daha sonra bu yapılandırmada dış manyetik alanların plazmada kink istikrarsızlıklara ve duvarlarda beklenmedik yüksek ısı kaybına yol açabileceği tespit edildi.2013 yılında, madde bilim adamlarından oluşan bir grup, soğuk gazın sadece yüksek basınçlı battaniye kullanılarak hiçbir manyetik hapis olmadan istikrarlı geçirimsiz plazma oluşturulabileceğini bildirdi. Plazma özelliklerine spektroskopik veriler, yüksek basınç elde etmenin zor olduğunu iddia ederken, farklı nano sentezi üzerindeki plazma pasif etkisi hapsini önerdi. Ayrıca saniyenin onda biri için sızdırmazlığı muhafaza üzerine, plazma gazı arayüzünde iyonlarının tarama reaksiyonları ve kompleks nano oluşumu farklı kinetik giden (viskoz ısıtma olarak da bilinir) ısıtılması güçlü bir ikincil moda yol açabilir. Matematiksel açıklamalar küçükresim|Bir plazmada, alan hizalanmış Birkeland akım karmaşık kendinden daraltıcı manyetik alan çizgileri ve akım yolları geliştirilebilir. Plazmanın durumunu açıklamak için, tüm parçacık konumları ve hızları yazmak ve plazma bölgedeki elektromanyetik alanı tanımlamak gerekir. Bununla birlikte, bir plazma içindeki tüm partikülleri takip etmek için, genel olarak pratik ve gerekli değildir. Bu nedenle, plazma fizikçilerin genellikle kullandıkları daha az ayrıntılı iki türü vardır Sıvı modeli Sıvı modeller her bir pozisyon etrafında ortalama hız ve düzeltilen yoğunluk miktarları açısından plazmaları tanımlar. Basit bir sıvı modeli, plazmaya manyeto hidrodinamikler, Maxwell denklemleri ve Navier-Stoke denklemlerinin bir kombinasyonu ile yönetilen tek bir sıvı gibi davranır. Daha genel bir açıklama iyonlar ve elektronların ayrı ayrı açıklandığı iki sıvı plazma görüntüsü vardır. Collisionality bir Maxwell-Boltzmann dağılımına yakın plazma hız dağılımını tutmak için yeterince yüksek olduğunda sıvı modeller genellikle doğrudur. Çünkü sıvı modeller genellikle her uzamsak yerde belirli bir sıcaklıkta tek bir akış açısından plazma tarifi olduğundan, kiriş veya çift katmanları gibi ne yakalama hızı uzay yapıları, ne de dalga-parçacık efektleri ile çözebilirsiniz. Kinetik modeli Kinetik modeller plazmada her noktada parçacık hızı dağılım fonksiyonunu tanımlar ve bu nedenle Maxwell-Boltzmann dağılımını varsaymak gerekmez. Bir kinetik açıklama çarpışmasız plazmalar için genellikle gereklidir. Bir plazmada kinetik bilgi için iki genel yaklaşım vardır. Bir hız ve konumda, bir ızgara üzerinde süzülmüş dağılma fonksiyonunu temsile dayanır. Parçacık-hücre (PIC) tekniği olarak bilinen ve tek tek parçacıkların çok sayıdaki yörüngeleri kinetik bilgi içerir. Kinetik modeller sıvı modellere göre daha yoğun hesaplanırlar. Vlasov denklemi bir elektromanyetik alan ile etkileşimde yüklü parçacıkların sistem dinamiklerini tanımlamak için kullanılabilir. Manyetize plazmalardaki, gyro kinetik yaklaşım tamamen kinetik simülasyon hesaplamayla azaltılabilir. Yapay plazmalar Çoğu yapay plazmalar, elektrik ve/veya manyetik alanların uygulanmasıyla oluşturulur. Bir laboratuvar ortamında ve endüstriyel kullanım için üretilen plazma genellikle şu şekilde kategorize edilebilir: Güç kaynağı tipi plazma DC, RF ve mikrodalga oluşturmak için kullanılan Basınç faaliyetinde vakum basıncı (plazma püskürtme olarak yüzey işlemler(kaplama), mikroelektronik dağlama, metal kesme, ve kaynak; bunlarla birlikte, günlük araç egzoz temizleme ve floresan/ışıldayan lamba gibi,hatta uzay mühendisliği için süpersonik yanmalı motorlarda bir rol oynarken. Düşük basınç deşarjları arıltılı deşarj plazması: iki metal elektrotlar arasındaki boşluğa DC veya düşük frekanslı RF ( Kaynakça Dış bağlantılar Free plasma physics books and notes Plasmas: the Fourth State of Matter Plasma Science and Technology Kategori:Fizik terimleri Kategori:Elektrik iletkenleri Kategori:Gazlar
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri