Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Protein ikincil yapısı

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
[[Dosya:Myoglobin.png|küçükresim|200px|Miyoglobin proteininin 3B yapısının temsili. Alfa sarmallar renkli, ve rastgele sarımlar beyazdır, beta yaprak yoktur. Bu protein, 3 boyutlu yapısı X-ışını kristalografisi ile çözülmüş ilk protein olmuştur. Max Perutz and Sir John Cowdery Kendrew 1958'de yayımlanan bu başarıları onların 1962'de Nobel Kimya Ödülü'nü kazanmalarını sağlamıştır.]] Biyokimya ve yapısal biyolojide ikincil yapı, protein veya nükleik asit (DNA/RNA) gibi biyopolimerlerin yerel parçalarının genel, üç boyutlu biçimleridir. Buna karşın, atomlarının üç boyutlu uzaydaki konumları üçüncül yapı tanımlamasına girer. İkincil yapının resmî tanımı, bir biyopolimerin hidrojen bağı yapıları ile tanımlanabilir; bunlar atomik çözünürlüklü bir yapı aracılığıyla ile belirlenir. Proteinler durumunda, ikincil yapı, protein omurgasındaki amit ve karboksil grupları arasındaki hidrojen bağlarının örüntüsü ile tanımlanır. Nükleik asitlerde, ikincil yapı azolu bazlar arasındaki hidrojen bağlarının örüntüsü ile tanımlanır. Bazen hidrojen bağı örüntülerinde önemli distosiyon olabilir, böyle durumlarda ikincil yapının otomatik öngörüsü zor olabilir. Proteinlerde ikincil yapı Ramachandran grafiğininin belli bir bölgesindeki omurga dihedral açılar örüntüsüne bağlı olarak da tanımlanabilir. Yani, bu dihedral açılara sahip bir amino asit kalıntılarından oluşan bir protein parçası, sarmal (heliks) olarak adlandırılabilir, gerçekten doğru hidrojen bağlarına sahip olup olmadığına bakılmaksızın. Genelde, yapısı çözülmüş bir proteinin PDB dosyasında onun ikincil yapısı da belirtilir. Bir biyopolimerin ikincil yapı içeriği (örneğin "bu protein %40 α-sarmal ve %20 β-yapraktır" demek gibi) çoğu zaman spektroskopik olarak kestirilebilir. Proteinler için yaygın bir yöntem, uzak mor-ötesi (170-250nm) dairesel dikroizmdir. 208 ve 222nm'de belirgin bir çifte minimum, α-sarmal yapıya işaret eder, buna karşın 204nm veya 217nm'de tek bir minimum, sırasıyla, rastgele sarım veya β-yaprak yapının işaretidir. Daha ender kullanılan bir yöntem, kizilötesi spektrodkopisidir, bununla hidrojen bağlanmasına duyarlı olan amit gruplarının osilasyonlarına bakılır. İkincil yapı içeriğini hassas şekilde kestirmek için kullanılan bir diğer yöntem de, Nükleer manyetik rezonans spektrumundaki bazı kimyasal kaymalara bakmaktır. ikincil yapı terimi 1952'de Stanford Universitesi'nde bulunan Kaj Ulrik Linderstrøm-Lang tarafından türetilmiştir. Protein küçükresim|sağ|Bir alfa-sarmalı stabilize eden hidrojen bağları (sarı noktalar)|120px Proteinlerde ikincil yapı, amino asit kalıntıları arasındaki hidrojen bağları tarafından belirlenir. En yaygın ikincil yapılar alfa sarmal ve beta yapraktır. Başka sarmal tipleri, 3 helix ve π sarmalın da enerjetik bakımdan uygun hidrojen bağı örüntüleri olduğu hesaplanmıştır; ancak doğal proteinlerde bu tip sarmallar genelde ancak alfa-sarmalların uçlarında görülür, uygunusuz istiflenmeden dolayı ortalarda görülmezler. Poliprolin sarmal ve alfa yaprak gibi uzun veya geniş yapılar doğal proteinlerde ender bulunur ama bu yapıların protein katlanma sürecinde önemli oldukları hipotezlenir. "Normal" ikincil yapı elemanları arasında sıkı dönüşler ve gevşek, esnek ilmikler bulunur. Rastgele sarmal gerçek bir ikincil yapı elemanı değildir, düzenli bir ikincil yapının yokluğuna karşılık gelen konformasyonlar kümesidir. Amino asitler ikincil yapı elemanları oluşturma yetenekleri bakımından çeşitlilik gösterir. Prolin ve glisin bazen "sarmal kırıcı" olarak bilinir, çünkü α-sarmal omurga yapısının düzenliliğini bozarlar. Ancak, bunların ikisinin de olağandışı özellikleri vardır ve bu yüzden dönüşlerde sık bulunurlar. Sarmal bir konformasyon edinmeyi tercih eden amino asitler arasında lizin, glutamat, metyonin, alanin ve lösin bulunur. Buna karşın, büyük aromatik kalıntılar (triptofan, tirozin ve fenilalanin) ve -dallı amino asitler (izolösin, valin ve treonin) beta yaprak konformasyonunu tercih ederler. Ne var ki bu tercihler çok güçlü değildir, bu yüzden sadece protein dizisine dayanarak ikincil yapıyı öngörmek güvenilir değildir. Protein ikincil yapısını tanımlamak için birkaç yöntem vardır (örneğin, DEFINE, DSSP, STRIDE (protein)). DSSP kodu küçükresim|200px|Yedeksiz (non-redundant) pdb_select veritabanından elde edilmiş dağılım (Mart 2006); DSSP tarafından belirlenmiş ikincil yapı; 3 hâle indirgenmiş olan 8 konformasyon hâli: H=HGI, E=EB, C=STC; DSSP hâllerinin indirgenmesinden kaynaklanan dağılım karışımları olduğu görülebilir Protein İkincil Yapılar Sözlüğü (İngilizce Dictionary of Protein Secondary Structure, kısaca DSSP olarak bilinir) protein ikincil yapılarını tek harfli kodlar ile betimler. İkincil yapı, hidrojen bağı örüntülerine dayanarak tayin edilir. Bu hidrojen bağı örüntüleri Pauling ve arkadaşları tarafından 1951'de, deneysel olarak herhangi bir protein yapısı daha çözülmeden, önerilmişti. DSSP sekiz tip ikincil yapı tanımlar: G = 3-dönmeli sarmal (3 sarmal). Asgari uzunluk 3 kalıntıdır. H = 4-dönmeli sarmal (α sarmal). Asgari uzunluk 4 residues. I = 5-dönmeli sarmal (π sarmal)). Asgari uzunluk 5 residues. T = hidrojen bağlı dönüş (3, 4 or 5 dönmeli) E = paralel veya anti-paralel β-yaprak konformasyonlu uzun şeritler. Asgari uzunluk 2 kalıntıdır. B = izole bir β-köprüye ait bir kalıntı (tek bir çift β-yaprak hidrojen bağı oluşumu) S = kıvrım (hidrojen bağına dayanmayana tek tanımlama). Yukarıdaki konformasyonlardan birinde olmayan amino asit kalıntıları, sekizinci bir tip sayılan 'sarım' (İngilizce 'coil') olarak tasnif edilirler: çoğu zaman ' ' (boşluk), c (coil, yani sarım) veya '-' (tire). Sarmallar (G,H ve I) ve yaprak konformasyonlarının makul bir uzunluğa sahip olmak zorundadır. Bu demektir ki, birincil yapıdaki iki yan yana kalıntı aynı hidrojen bağı örüntüsünü oluşturmalıdır. Eğer sarmal ve hidrojen bağlanma örüntüsü çok kısaysa, (sırasıyla) T veya B olarak tanımlanırlar. Kalıntıları başka protein ikincil yapı kategorilerine de (keskin dönüş, Omega ilmik, vb.) atamak mümkündür ama bunlar daha ender kullanılır. DSSP H-bağı tanımları İkincil yapı hidrojen bağlanması ile tanımlanır, dolayısıyla bir hidrojen bağının kesin tanımı esastır. İkincil yapı için standart H-bağı tanımı, DSSP'nin tanımıdır, bu da tamamen elektrostatik bir modele dayalıdır. Bu model, karbonil karbonu ve oksijene, yükleri, amit azotu ve hidrojene de, yükleri belirler. Elektrostatik enerji değeri şudur: DSSP'ye göre, eğer ve sadece eğer (ancak ve ancak) -0.5 kcal/mol'den küçük olursa bir H-bağı olabilir. DSSP formülü, fiziksel H-bağı enerjisinin nispeten kaba bir yaklaştırımı olsa da, ikincil yapıyı tanımlamakta genel kabul görmüş bir araçtır. Protein ikincil yapı öngörüsü Protein üçüncül yapısını sadece amino asit dizisine dayanarak öngörmek çok zorlu bir problemdir (bakınız protein yapı öngörüsü), ama basit ikincil yapı tanımlamalarını kullanmak daha çözümlenebilir bir problemdir ve uzun zamandır bir araştırma konusu olmuştur. 8-halli DSSP şifresi, bir proteindeki hidrojen bağlanma örüntülerindeki çeşitliliğin bir sadeleştirmesidir. Buna rağmen, ikincil yapı öngörü yöntemlerinin çoğu, daha da ileri giderek, bunları üç ana hâle indirgerler: Sarmal, Yaprak ve Sarım. 8 halden 3 hale dönüşümün nasıl yapıldığı yöntemden yönteme değişir. İkincil yapı öngürüsünün ilk geliştirilen yöntemleri, her bir amino asitin sarmal veya yaprak oluşturma eğilimine dayanıyordu; bazen buna ek olarak, ikincil yapı elemanlarının oluşum serbest enerjisini kestirmek için kurallar da dahi ediliyordu. Bu yöntemler, bir amino asit kalıntısının üç hâlden (sarmal/yaprak/sarım) hangisini benimseyeceğini öngörmekte %60 oranında başarılıydı. Daha sonraları, çoklu dizi hizalamasından yararlanılarak doğruluk oranında önemli bir artış elde edildi (%80'e). Evrimsel olarak birbiriyle ilişkili olan proteinlerin belli bir pozisyonda (ve onun civarında, tipik olarak her iki tarafındaki 7 pozisyonda) yer alabilecek tüm amino asit kalıntılarının dağılımını bilmek, o konum yakınındaki yapısal eğilimler hakkında çok daha iyi bir fikir verir. Örneğin, bir proteinin belli bir konumundan bir glisin olması, orada bir rastgele sarım olduğunu ima edebilir. Ancak, çoklu dizi hizalaması kullanılarak, bir milyar yıllık evrimsel mesafe ile birbirine akraba olan proteinler incelendiğinde, bu proteinlerin %95'inde, o konumda (ve yakın pozisyonlarda) sarmal tercih eden amino asitlerin bulunduğu görülebilir. Üstelik, o ve yakınındaki konumlardaki ortalama hidrofobisite, aynı dizi hizalaması ile incelendiğinde, kalıntıların solvent erişilirliğinin bir α-sarmal yapı ile tutarlılık gösterdiği görülebilir. Bu bilgiler toplu olarak değerlendirildiğinde, söz konusu proteindeki glisinin rastgele sarım değil, α-sarmal bir yapıya ait olması muhtemel bulunur. Mevcut tüm verileri katıştırarak 3-hâlli bir öngörü yapan çeşitli yöntemler vardır, bunların arasında yapay sinir ağları, gizli Markov modelleri ve destek vektör makinaları bulunur. Modern öngörü yöntemleri ayrıca her bir pozisyon için bir güven skoru da verir. İkincil yapı öngörülerinin karşılaştırmalı olarak değerlendirildiği, örneğin EVA EVA deneyi gibi, çeşitli girişimler vardır. Yaklaşık 270 haftalık bir deneme süreci sonucunda, hâlen en hatasız yöntemler PSIPRED, SAM, PORTER, PROF ve SABLE olarak belirlenmiştir. İlginçtir, bu farklı yöntemlerin konsensusunu alarak daha iyi bir sonuç çıkmamaktadır. β-yaprakların öngörüsü hâlâ ilerlemeye ihtiyaç gösteren bir konudur; güvenle β-yaprak olduğu öngörülen amino asit kalıntılarının çoğunlukla gerçekten öyle oldukları bulunmuştur, ama bu yöntemler bazı β-yaprakları kaçırmaktadır, yani sahte negatifler vardır. Öngürü doğruluğunun muhtemelen %90 seviyesinde bir üst sınır vardır, DSSP'nin ikincil yapı sınıflarını (sarmal/yaprak/sarım) PDB yapıları ile eşleştirmesinin ayrıntıları nedeniyle. Hatasız ikincil yapı öngörüsü, çok basit homoloji modelleme vakaları haricinde, üçüncül yapının öngörüsü için temel bir unsurdur. Örneğin, 6 ikincil yapı elemanlı βαββαβ örüntüsü, ferredoksin katlamasının imzası sayılır. Hizalama Hem protein hem nükleik asit ikincil yapıları, çoklu dizi hizlamasına yardımcı olmakta kullanılabilir. Sadece basit dizi bilgisi değil, ikincil yapı bilgisi de dahi edilerek bu hizalamaların daha doğru olması sağlanabilir. Bu yaklaşım, RNA için o kadar faydalı olmayabilir çünkü baz eşleşmesi, diziden çok daha fazla korumalıdır. Birincil yapıları hizalanmayacak kadar birbirinden evrimsel olarak ıraksamış proteinlerin ikincil yapılarına bakılarak aralarındaki akrabalıklar bazen fark edilebilir. Ayrıca bakınız Katlanma (kimya) Protein birincil yapısı Protein üçüncül yapısı Protein dördüncül yapısı Translasyon Yapısal motif Kaynakça Konuyla ilgili yayınlar C Branden and J Tooze (1999). Introduction to Protein Structure 2nd ed. Garland Publishing: New York, NY. M. Zuker "Computer prediction of RNA structure", Methods in Enzymology, 180:262-88 (1989). (RNA ikincil yapısını öngörmek için dinamk programlama algoritmaları hakkındaki klasik makale.) L. Pauling and R.B Corey. Configurations of polypeptide chains with favored orientations of the polypeptide around single bonds: Two pleated sheets. Proc. Natl. Acad. Sci. Wash., 37:729-740 (1951). (Beta-yaprak konformasyonu hakkındaki orijinal makale.) L. Pauling, R.B. Corey and H.R. Branson. Two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. Wash., 37:205-211 (1951). (alfa- and pi-sarmal konformasyonları hakkında makale; sarmalının mümkün olmadığını göstermiştir.) Dış bağlantılar NetSurfP - İkincil yapı ve yüzey erişim öngörücüsü PROF Jpred PSIPRED DSSP WhatIf Mfold STRIDE PSSpred 2 Kategori:Stereokimya
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri