Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Riemann yüzeyi

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
küçük|dikey=1.4|F (z) = √z fonksiyonu için Riemann yüzeyi. Dikey eksen √z'nin reel kısmını temsil ederken, iki yatay eksen z'nin reel ve sanal kısımlarını temsil eder. √z'nin sanal kısmı, noktaların renklendirilmesiyle temsil edilir. Bu işlev için, aynı zamanda grafiği dikey eksen etrafında 180° döndürdükten sonraki yüksekliktir. Matematikte Riemann yüzeyi, özellikle karmaşık analizde bahsi geçen tek boyutlu karmaşık bir manifolddur. Bu yüzey(ler) ilk olarak Bernhard Riemann tarafından incelenmiş ve isimlendirilmiş. Riemann yüzeyleri, karmaşık düzlemin deforme olmuş versiyonları olarak düşünülebilir: her noktanın yakınında karmaşık düzlemin yerel olarak yamaları gibi görünürler, ama topolojisi oldukça farklı olabilmektedir. Riemann yüzeylerindeki ana ilgi, holomorfik fonksiyonların aralarında tanımlanabilmesidir. Riemann yüzeyleri günümüzde bu fonksiyonların global davranışı, özellikle de karekök ve diğer cebirsel fonksiyonlar veya logaritma gibi çok değerli fonksiyonların incelenmesi için doğal ortam olarak kabul edilmektedir. Her Riemann yüzeyi iki boyutlu gerçek bir analitik manifolddur (yani bir yüzey), ama holomorfik fonksiyonların kesin tanımı için gerekli olan bir alt yapı (karmaşık bir yapı) içerir. İki boyutlu bir gerçek manifold, yönlendirilebilir ve ölçülebilir ise bir Riemann yüzeyine dönüştürülebilir. Dolayısıyla küre ve simit formunda karmaşık yapıları kabul eder, fakat Möbius şeridi, Klein şişesi ve gerçek yansıtmalı düzlem bunu yapmaz. Tanımlar Riemann yüzeyinin birkaç eşdeğer tanımı vardır: Bir x Riemann yüzeyi, karmaşık bir boyuta ve bağlantıya sahip bir manifolddur. Bu, xin karmaşık düzlemin açık birim diskine bir çizelge atlası ile donatılmış bağlı bir Hausdorff alanı olduğu anlamına gelir: her x ∈ X noktası için, kompleksin açık birim diskine homeomorfik olan bir x komşuluğu vardır. Düzlem ve örtüşen iki harita arasındaki geçiş haritalarının holomorfik olması gerekir. Riemann yüzeyi, iki boyutlu yönlendirilmiş bir manifolddur. Yine, manifold, xin herhangi bir x noktasında, uzayın gerçek düzlemin bir alt kümesine homeomorfik olduğu anlamına gelir. "Riemann" eki, xin manifold üzerinde açı ölçümüne izin veren ek bir yapıya, yani Riemann metriklerinin bir eşdeğerlik sınıfına sahip olduğunu belirtir. Ölçtükleri açılar aynıysa, bu tür iki metrik eşdeğer kabul edilir. x üzerinde bir eşdeğerlik metrik sınıfı seçmek, uyumlu yapının ek verisidir. Örnekler [[Dosya:Riemann sphere1.svg|küçük|150px|Riemann küresi]] [[Dosya:Torus.svg|küçük|150px|Bir simit]] Diğer tanımlar ve özellikler Karmaşık manifoldlar arasında bulunan herhangi bir haritada olduğu gibi iki Riemann yüzeyi, M ve N arasındaki bir f: M → N fonksiyonuna holomorfiktir, eğer M atlasındaki her g tablosu ve N atlasındaki her h grafiği için h ∘ f ∘ g haritası, tanımlandığı her yerde holomorfiktir (Cden Cye giden bir fonksiyon olarak). İki holomorfik haritanın bileşimi holomorfiktir. Mden Nye giden fonksiyonun tersi de holomorfik olan bijektif bir holomorfik fonksiyondur. Varsa iki Riemann yüzeyi M ve N, biholomorfik (veya konformal bakış açısını vurgulamak için uyumlu olarak eşdeğer) olarak isimlendirilir (ikinci koşulun otomatik olduğu ve bu nedenle ihmal edilebilir). Uyumlu olarak birbirine eşdeğer iki Riemann yüzeyi, tüm pratik amaçlar için aynıdır. Yönlenebilirlik Karmaşık bir manifold olan her Riemann yüzeyi, gerçek bir manifold olarak yönlendirilebilir. h = f(g (z)) geçiş fonksiyonuna sahip karmaşık grafikler f ve g için h, z noktasındaki Jacobi'nin sadece gerçek doğrusal harita olduğu Rden Rye uzanan bir harita olarak düşünülebilir. h(z) karmaşık sayısıyla çarpma. Bununla birlikte, karmaşık bir α sayısı ile çarpmanın gerçek determinantı |α|ye eşittir. Bu nedenle, Jakobiyen h'nin pozitif determinantı vardır. Sonuç olarak, karmaşık atlas yönlendirilmiş bir atlastır. Fonksiyonlar Kompakt olmayan her Riemann yüzeyi, sabit olmayan holomorfik fonksiyonları kabul eder (Cdeki değerlerle). Aslında, kompakt olmayan her Riemann yüzeyi bir Stein manifoldudur. Buna karşılık, kompakt bir Riemann yüzeyinde X, C değerlerine sahip her holomorfik fonksiyon maksimum prensibi nedeniyle sabittir. Bununla birlikte, her zaman sabit olmayan meromorfik fonksiyonlar vardır (Riemann küresi C ∪ {∞} değerlerine sahip holomorf fonksiyonlar). Daha kesin olarak, Xin fonksiyon alanı, C'(t)nin sonlu bir uzantısıdır, bir değişkendeki fonksiyon alanı, yani herhangi iki meromorfik fonksiyon cebirsel olarak bağımlıdır. Bu ifade daha yüksek boyutlara genelleme yapar. Meromorfik fonksiyonlar, Riemann teta fonksiyonları ve yüzeyin Abel-Jacobi haritası açısından oldukça açık bir şekilde verilebilir. Kaynakça Dış bağlantılar "Riemann surface" (İngilizce), Encyclopedia of Mathematics, EMS Press, 2001 [1994] "Riemann Surface" (İngilizce). PlanetMath. Kategori:Riemann geometrisi Kategori:Riemann yüzeyleri Kategori:Matematik terimleri
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri