Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Ters ve doğrusal yön hareket

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
küçükresim|Ters yön yörünge: uydu (kırmızı) ana gezegenin tersi yönde hareket etmektedir. (mavi/siyah) Ters yönlü veya retrograd hareket, genel olarak, astronomik bir nesnenin kütle çekimi altında bulunduğu birincil cismin dönüş yönüne göre tam tersi yönündeki yörünge veya dönme hareketi olarak tanımlanmaktadır. Ayrıca bir nesnenin dönme ekseninin salınımı veya üğrümü gibi diğer hareketleri de tanımlayabilir. Prograd veya doğrusal hareket ise, birincil cismin dönüşüyle aynı yönde olan daha olağan bir harekettir. Bununla birlikte, söz konusu hareket yönleri, birincil cisim dışındaki diğer başka nesnelere göre de tanımlanabilmektedir. Dönüş yönü, uzaktaki sabit yıldızlarda olduğu gibi eylemsiz bir referans noktasına göre belirlenir. Güneş Sistemi'nde tüm gezegenlerin ve kuyruklu yıldızlar hariç diğer birçok nesnenin Güneş etrafındaki yörüngeleri doğrusaldır. Bu cisimler Güneş'in kendi ekseni etrafında döndüğü yönde olmak üzere Güneşin çevresinde dönerler. Bir başka deyişle Güneş'in kuzey kutbundan bakıldığında saat yönünün tersinde dönerler. Venüs ve Uranüs hariç, gezegenlerin kendi eksenleri etrafındaki dönüşleri de doğrusaldır. Doğal uyduların çoğu çevresinde döndükleri gezegenlere göre doğrusal yörüngelere sahiptir. Uranüs'ün doğrusal uyduları Uranüs'ün döndüğü yönde, fakat Güneş'e göre ters yönlü yörüngede dolanırlar. Neredeyse tüm düzenli uydular gelgit kilitlidir ve bu nedenle doğrusal dönüşe sahiptir. Neptün'ün ters yönlü uyduları, oldukça büyük ve gezegene yakın olan Triton uydusu hariç, genellikle küçük ve gezegenlerinden uzaktır. Tüm ters yönlü uyduların, gezegenleri tarafından yakalanmadan önce ayrı olarak oluştukları düşünülmektedir. Dünya'nın düşük eğimli yapay uydularının çoğu doğrusal bir yörüngeye yerleştirilmiştir, çünkü bu durumda yörüngeye ulaşmak için daha az itici yakıt ihtiyacı ortaya çıkmakta olduğundan daha ekonomik bir yöntemdir. Gök sistemlerinin oluşumu Bir galaksi veya gezegen sistemi oluştuğunda, bu oluşuma yol açacak olan gaz ve toz bulutundan oluşan yakın malzemeler tıpkı kendi ekseni etrafında dönmekte olan disk şekline benzer bir şekil alır. Buradaki malzemenin çoğu belirli bir yörüngede döner ve tek yönde hareket eder. Hareketin bu tekdüzeliği bir gaz bulutunun çökmesinden kaynaklanır. Çöküşün doğası açısal momentumun korunumu ile açıklanmaktadır. 2010 yılında geriye doğru yörüngeleri olan birkaç sıcak Jüpiter'in keşfi, gezegen sistemlerinin oluşumuyla ilgili teorilerin sorgulanmasına neden olmuştur. Bu durum, yıldızların ve gezegenlerinin tek başlarına değil, moleküler bulutlar içeren yıldız kümelerinde oluştuğuna odaklanılarak açıklanabilir. Bir ön gezegen diski bir bulutla çarpıştığında ya da buluttan materyal çaldığında, bu durum diskin ve bunun sonucunda ortaya çıkan gezegenlerin geriye doğru hareket etmesine neden oluyor olabilir. Yörünge ve dönme parametreleri Bir gök cisminin yörünge eğikliği ve eksen eğikliği cismin yörüngesinin veya dönüşünün doğrusal mı yoksa ters yönlü mı olduğunu göstermektedir. Yörünge eğikliği Bir gök cisminin yörünge eğimi, yörünge düzlemi ile cismin ana ekseninin ekvator düzlemi gibi başka bir referans noktası arasındaki açıdır. Güneş Sistemi'nde gezegenlerin yörünge eğimi, Dünya'nın Güneş etrafındaki yörüngesinin düzlemi olan ekliptik düzlem referans alınarak hesaplanmaktadır. Uyduların eğimi, yörüngesinde döndükleri gezegenin ekvatoru baz alınarak ölçülür. Eğimi 0 ila 90 derece arasında olan bir nesne, ana gezegenin döndüğü yönde dönmekte ya da yörüngede dolanmaktadır. Eğimi tam 90 derece olan bir cisim ne doğrusal ne de ters yönlü olan dik bir yörüngeye sahiptir. Eğimi 90 derece ile 180 derece arasında olan bir nesne ise ters yönlü bir yörüngededir. Eksen eğikliği Bir gök cisminin eksen eğikliği, bir nesnenin dönme ekseni ile nesnenin merkezinden geçen yörünge düzlemine dik bir çizgi arasındaki açıdır. eksen eğikliği 90 dereceye kadar olan bir nesne birincil ile aynı yönde dönmektedir. eksen eğikliği tam 90 derece olan bir cisim, ne doğrusal ne de ters yönlü olan dik bir dönüşe sahiptir. eksen eğikliği 90 derece ile 180 derece arasında olan bir nesne yörünge yönünün tersi yönde dönmektedir. Eksen eğikliğinden bağımsız olarak, Güneş Sistemi'ndeki herhangi bir gezegen veya uydunun kuzey kutbu, Dünya'nın kuzey kutbuyla aynı göksel yarım kürede bulunan kutup olarak tanımlanır. Güneş sistemi elemanları Gezegenler Güneş Sistemi'ndeki sekiz gezegenin tümü Güneş'in etrafında, Güneş'in kendi ekseni etrafındaki dönüş yönüyle aynı yönde, Güneş'in kuzey kutbuna göre bakıldığında ise saat yönünün tersi yönünde dönmektedirler. Gezegenlerin altısı da kendi eksenleri etrafında Güneş'e göre doğrusal yönde dönerler. Venüs ve Uranüs bu duruma istisna teşkil etmekte olup, bu gezegenler kendi eksenleri etrafında Güneş'e göre ters yönde dönerler. Venüs'ün eksen eğikliği 177° olup, Güneş etrafında izlediği yörüngenin neredeyse tam tersi yönde kendi ekseni etrafında dönmektedir. Uranüs'ün eksen eğikliği ise 97,77°' olup, dönme ekseni Güneş Sistemi düzlemine neredeyse dik bir şekildedir. Uranüs'ün olağandışı eksen eğikliğinin nedeni kesin olarak bilinmemekle birlikte buna ilişkin olası bir varsayım, Güneş Sistemi'nin oluşumu sırasında Dünya büyüklüğünde bir ön gezegenin Uranüs ile çarpıştığı ve gezegenin eksen eğikliğinde çarpık bir yönelime neden olduğu şeklindedir. Venüs'ün 243 gün süren halihazırdaki yavaş ve ters yönlü dönüşüyle en başından beri oluşmuş olması olası görünmemektedir. Venüs muhtemelen Güneş Sistemi'ndeki gezegenlerin çoğunda olduğu gibi en başta birkaç saatlik bir periyoda sahip hızlı bir doğrusal dönüşe sahipti. Ancak Güneş'e önemli ölçüde yerçekimsel gelgit dağılımı yaşayacak kadar yakındır. Ayrıca geriye doğru bir tork yaratan, atmosferik gelgitler yaratacak kadar da aşırı sıcak ve kalın bir atmosfere sahiptir. Venüs'ün mevcut yavaş ters yönlü dönüşü, Venüs'ü Güneş'e kütleçekimsel olarak kilitlemeye çalışan gelgitler ile Venüs'ü ters yönlü yönde döndürmeye çalışan atmosferik gelgitler arasında bir denge halindedir. Gelgitler, günümüzdeki bu dengeyi korumanın yanı sıra, Venüs'ün dönüşünün ilkel hızlı doğrusal yönünden günümüzdeki yavaş ters yönlü dönüşüne doğru evrimini açıklamak için de yeterlidir. Geçmişte Venüs'ün geriye doğru dönüşünü açıklamak için çarpışmalar ya da en baştan bu şekilde oluşmuş olması gibi çeşitli alternatif hipotezler de öne sürülmüştür. Güneş'e Venüs'ten daha yakın olmasına rağmen Merkür, yörüngesinin eksantrikliği nedeniyle 3:2 spin-yörünge rezonansına girdiği için gelgit kilitli değildir. Merkür'ün doğrusal dönüşü o kadar yavaştır ki, eksantrikliği nedeniyle açısal yörünge hızı enberi yakınındaki açısal dönüş hızını aşar ve Merkür'ün kendi gökyüzünde Güneş'in hareketinin geçici olarak tersine dönmüş gibi görünmesine neden olur. Dünya ve Mars'ın dönüşleri de Güneş'le olan gelgit kuvvetlerinden etkilenir, ancak gelgit kuvvetlerinin daha zayıf olduğu Güneş'ten daha uzakta oldukları için Merkür ve Venüs gibi bir denge durumuna ulaşmamışlardır. Güneş Sistemi'nin gaz devleri çok büyüktür ve gelgit kuvvetlerinin dönüşlerini yavaşlatabilecek bir etki göstermek için Güneş'ten çok uzaktadırlar. Cüce gezegenler Bilinen tüm cüce gezegenler ve cüce gezegen adayları Güneş etrafında doğrusal yörüngeye sahiptir, ancak bazıları kendi ekseni etrafında ters yönlü dönüşe sahiptir. Bunlardan biri olan Plüton'un eksen eğikliği yaklaşık 120 derecedir ve kendi ekseni etrafında Güneş'e göre ters yönde dönmektedir. Plüton ve uydusu Charon birbirlerine gelgitsel olarak kilitlenmişlerdir. Plüton uydu sisteminin büyük bir çarpışma sonucu oluştuğu düşünülmektedir. Doğal uydular ve halkalar küçükresim|right|Turuncu uydu ters yön yörüngededir Bir doğal uydu, eğer bir gezegenin çekim alanında gezegen oluşurken oluşmuşsa, gezegenin yörüngesiyle ve kendi ekseni etrafındaki dönüş yönüyle aynı yönde hareket edecektir. Bu kapsamdaki uydular düzenli uydu olarak adlandırılır. Ancak bir doğal uydu, bulunduğu yerden başka bir yerde oluşmuş ve daha sonra bir gezegenin çekim alanı tarafından yörüngeye çekilmişse, gezegenin doğrusal yönlü dönen tarafına mı yoksa ters yönlü döneceği tarafına mı yaklaştığına bağlı olarak ya ters yönlü ya da doğrusal yönlü bir yörüngeye çekilebilir. Bu şekildeki uydulara ise düzensiz uydu adı verilmektedir. Güneş Sistemi'nde asteroid büyüklüğündeki uyduların çoğu ters yönlü yörüngelere sahipken, Triton (Neptün'ün uydularının en büyüğü) dışındaki diğer tüm büyük uydular doğrusal yörüngelere sahiptir. Satürn'ün Phoebe halkasındaki parçacıkların düzensiz uydu Phoebe'den kaynaklı olarak ters yönlü bir yörüngeye sahip oldukları düşünülmektedir. Tüm ters yönlü uydular bir dereceye kadar gelgit yavaşlaması yaşarlar. Güneş Sistemi'nde bu etkinin ihmal edilemez olduğu tek uydu Neptün'ün uydusu Triton'dur. Diğer tüm ters yönlü uydular gezegene uzak yörüngelerdedir ve gezegenle aralarındaki gelgit kuvvetleri ihmal edilebilir düzeydedir. Hill küresi içinde, ana cisimden daha uzak bir mesafede bulunan ters yönlü yörüngeler için kararlılık bölgesi, doğrusal yörüngeler için olandan daha uzaktadır. Bu durum Jüpiter'in etrafındaki ters yönlü uyduların sayısının çok oluşuna bir açıklama olarak öne sürülmüştür. Ancak Satürn'de ters yönlü/doğrusal uyduların daha dengeli bir karışımı olduğundan, bunun altında yatan nedenler daha karmaşık görünmektedir. Hyperion hariç, Güneş Sistemi'ndeki bilinen tüm düzenli gezegensel doğal uydular ana gezegenlerine gelgitsel olarak kilitlenmiştir, bu nedenle ana gezegenlerine göre sıfır dönüşe sahiptirler, ancak ana gezegenleri etrafında doğrusal yörüngelere sahip oldukları için Güneş'e göre ana gezegenleriyle aynı türde bir dönüşe sahiptirler. Yani, Uranüs hariç tüm gezegenler Güneş'e göre doğrusal bir dönüşe sahiptir. Eğer bir çarpışma olursa, materyal herhangi bir yönde fırlatılabilir ve doğrusal ya da ters yönlü uydular halinde birleşebilir; dönüş yönü bilinmemekle birlikte, Haumea'nın uyduları için durum böyle olabilir. Asteroitler Asteroitler genellikle Güneş etrafında doğrusal bir yörüngeye sahiptir. Az sayıdaki asteroidin ters yönlü yörüngede olduğu bilinmektedir. Ters yön yörüngeye sahip bazı asteroitler sönmüş kuyruklu yıldızlar olabilir, ancak bazıları ters yönlü yörüngelerini Jüpiter ile kütleçekimsel etkileşimler nedeniyle kazanmış olabilir. Küçük boyutları ve Dünya'ya olan uzaklıkları nedeniyle çoğu asteroidin dönüşünü teleskopik olarak analiz etmek zordur. 2012 itibariyle 200'den az asteroit için veri mevcuttur ve kutupların yönelimini belirlemeye yönelik farklı yöntemler genellikle büyük tutarsızlıklara neden olmaktadır. Poznan Gözlemevi'ndeki asteroid dönüş vektör kataloğu, hangi referans düzleminin kastedildiğine bağlı olarak asteroid koordinatlarını genellikle asteroidin yörünge düzlemi yerine ekliptik düzleme göre verir ve "ters yönlü" veya "doğrusal" hareket ifadelerini kullanmaktan kaçınır. İkili asteroitler olarak da bilinen uydulu asteroitler, ana kuşak ve Dünya'ya yakın popülasyondaki çapı 10km'den küçük tüm asteroitlerin yaklaşık %15'ini oluşturur ve çoğunun YORP etkisiyle parçalanacak kadar hızlı dönmesi sonucu oluştuğu düşünülmektedir. 2012 itibariyle ve dönüşün hesaplanabildiği konumlarda, asteroitlerin tüm uyduları asteroidin yörüngesinde asteroidin kendi ekseni etrafındaki dönüşüyle aynı yönde dönmektedir. Yörüngesel rezonansta olduğu bilinen cisimlerin çoğu rezonansta oldukları cisimlerle aynı yönde dönerler, ancak Jüpiter ve Satürn ile rezonansta olan birkaç ters yönlü asteroit de bulunmuştur. Kuyruklu yıldızlar Oort bulutundan gelen kuyruklu yıldızların ters yönlü olma olasılığı asteroitlerden çok daha yüksektir. Halley Kuyruklu Yıldızı Güneş'in etrafında ters yönlü bir yörüngeye sahiptir. Kuiper kuşağı cisimleri Kuiper kuşağı cisimlerinin çoğu Güneş etrafında ters yönlü bir yörüngeye sahiptir. Ters yön yörüngeye sahip olduğu keşfedilen ilk Kuiper kuşağı nesnesi 'dir. Ters yönlü yörüngeye sahip diğer Kuiper kuşağı nesneleri (471325) 2011 KT, , ve 2011 MM'dir. Tüm bu cisimlerin yörüngeleri 100°-125° aralığındaki eğimleriyle oldukça eğiktir. Meteorlar Güneş etrafında ters yönlü bir yörüngede bulunan göktaşları Dünya'yla doğrusal yönlü dönmekte olan göktaşlarından daha hızlı çarparak atmosferde yanma eğilimi gösterirler ve Dünya'nın Güneş'ten uzağa bakan tarafına (yani geceleri) çarpma olasılıkları daha yüksektir; doğrusal yönlü hareket eden göktaşları ise daha yavaş kapanma hızlarına sahiptirler ve daha çok meteor olarak iniş yaparlar ve Dünya'nın Güneş'e bakan tarafına çarpma eğilimindedirler. Çoğu göktaşı doğrusal yönde hareket etmektedir. Güneş Güneş'in Güneş Sistemi'nin kütle merkezi etrafındaki hareketi, gezegenlerden gelen tedirginlikler nedeniyle karmaşıklaşır. Her birkaç yüz yılda bir bu hareket doğrusal ve ters yönlü arasında değişir. Gezegensel atmosfer Dünya atmosferi içinde ters yönlü hareket veya retrogresyon, hareketi genel bölgesel hava akışı yönünün tersi olan hava sistemlerinde görülür, örneğin batı rüzgarlarına karşı doğudan batıya veya doğu rüzgarları aracılığıyla batıdan doğuya. Gezegenin dönüşüne göre doğrusal hareket, Dünya'nın termosferindeki ve Venüs'ün üst troposferindeki atmosferik süper rotasyonda görülür. Simülasyonlar, Plüton'un atmosferine, dönüşüne göre ters yönde esen rüzgarların hakim olması gerektiğini göstermektedir. Yapay uydular Düşük eğimli yörüngeler için tasarlanan yapay uydular genellikle doğrusal yönde dönmek üzere fırlatılır, çünkü bu, Dünya'nın dönüşünden yararlanarak yörüngeye ulaşmak için gereken itici yakıt miktarını en aza indirir (ekvatoral bir fırlatma sahası bu etki için en uygunudur). Ancak, İsrail Ofeq uyduları, fırlatma enkazının nüfusun yoğun olduğu kara alanlarına düşmemesini sağlamak için Akdeniz üzerinden batıya doğru, ters yönlü yönde fırlatılmaktadır. Ötegezegenler Yıldızlar ve gezegen sistemleri tek başlarına oluşmak yerine yıldız kümeleri içinde doğma eğilimindedirler. Ön gezegensel diskler küme içindeki moleküler bulutlarla çarpışabilir ya da onlardan malzeme çalabilir ve bu da disklerin ve onların sonucunda ortaya çıkan gezegenlerin yıldızlarının etrafında eğimli ya da ters yönlü yörüngelere sahip olmalarına yol açabilir. Geriye doğru hareket aynı sistemdeki diğer gök cisimleriyle kütleçekimsel etkileşimlerden (Bkz. Kozai mekanizması) ya da başka bir gezegenle neredeyse çarpışmadan da kaynaklanabilir ya da yıldızın manyetik alanı ile gezegen oluşturan disk arasındaki etkileşimler nedeniyle yıldızın kendisi, elemanlarının oluşumunun başlarında ters dönmüş olabilir. IRAS 16293-2422 önyıldız yığılma diskinin zıt yönlerde dönen parçaları vardır. Bu, ters yönde dönen bir yığılma diskinin bilinen ilk örneğidir. Eğer bu sistem gezegenler oluşturursa, iç gezegenler muhtemelen dış gezegenlerin tersi yönde yörüngede dönecektir. WASP-17b, yıldızının yörüngesinde yıldızın döndüğü yönün tersine döndüğü keşfedilen ilk ötegezegendir. Bir gün sonra ikinci bir gezegen daha keşfedilmiştir: HAT-P-7b. Bir çalışmada, bilinen tüm sıcak Jüpiterlerin yarısından fazlasının yörüngelerinin ana yıldızlarının dönüş ekseniyle yanlış hizalandığı ve altısının yörüngelerinin geriye doğru olduğu görülmüştür. Buna ilişkin ortaya atılan bir açıklama, sıcak Jüpiterlerin, pertürbasyonların daha yaygın olduğu ve gezegenlerin komşu yıldızlar tarafından yerçekimsel olarak yakalanmasının mümkün olduğu yoğun kümelerde oluşma eğiliminde olduğudur. Gezegen oluşumu sırasındaki son birkaç dev çarpışma, karasal bir gezegenin dönüş hızının ana belirleyicisi olma eğilimindedir. Dev çarpışma aşamasında, bir ön gezegen diskin kalınlığı gezegen embriyolarının boyutundan çok daha büyüktür, bu nedenle çarpışmaların üç boyutta herhangi bir yönden gelmesi eşit derecede olasıdır. Bu da çarpışan gezegenlerin eksen eğikliğinin 0 ila 180 derece arasında değişmesine ve herhangi bir yönün diğer yönler kadar olası olmasına ve hem doğrusal hem de ters yönlü dönüşlerin eşit derecede muhtemel olmasına neden olur. Bu nedenle, Venüs hariç Güneş Sistemi'nin karasal gezegenleri için yaygın olan küçük eksenel eğimli doğrusal dönüş, genel olarak karasal gezegenler için yaygın değildir. Yıldızların galaktik yörüngeleri İnsan gözünün görebildiği kadarıyla yıldızların örüntüsü gökyüzünde sabit görünür; bunun nedeni yıldızların Dünya'ya olan büyük uzaklıklarının çıplak gözle görülemeyecek bir hareketle sonuçlanmasıdır. Gerçekte yıldızlar galaksilerinin merkezi etrafında dönerler. Bir disk galaksinin genel dönüşüne göre yörüngesi geriye doğru olan yıldızların galaktik diskten ziyade galaktik halede bulunma olasılığı daha yüksektir. Samanyolu'nun dış halesi, yörüngesi geriye doğru olan ve dönüşü geriye doğru veya sıfır olan birçok küresel kümeye sahiptir. Halenin yapısı süregelen bir tartışmanın konusudur. Bazı çalışmalar iki farklı bileşenden oluşan bir hale bulduklarını iddia etmişlerdir. Bu çalışmalar, içte daha metal zengini, doğrusal (yani yıldızlar galaksinin yörüngesinde ortalama olarak disk dönüşü ile birlikte dönerler) ve dışta metal fakiri, ters yönlü (diske karşı dönen) bir bileşene sahip "ikili" bir hale olduğunu göstermektedir. Ancak bu bulgular, böyle bir ikiliğe karşı çıkan diğer çalışmalar tarafından sorgulanmıştır. Bu çalışmalar, gelişmiş bir istatistiksel analiz kullanıldığında ve ölçüm belirsizlikleri hesaba katıldığında, gözlemsel verilerin bir ikilik olmadan açıklanabileceğini göstermektedir. Yakındaki Kapteyn Yıldızı'nın Samanyolu ile birleşen bir cüce galaksiden kopması sonucunda galaksi etrafındaki yüksek hızlı ters yönlü yörüngesine oturduğu düşünülmektedir. Galaksiler Uydu galaksiler Galaksi kümeleri içindeki galaksilerin yakın geçiş ve birleşmeleri, galaksilerden materyal çekebilir ve daha büyük galaksilerin etrafında ileriye ya da geriye doğru yörüngelerde küçük uydu galaksiler yaratabilir. Samanyolu'nun etrafında Samanyolu'nun dönüşüne göre geriye doğru bir yörüngede dönen Complex H adlı bir galaksi Samanyolu ile çarpışmaktadır. Ters dönen şişkinlikler NGC 7331, diskin geri kalanıyla ters yönde dönen bir şişkinliğe sahip olan bir galaksi örneğidir; bu şişkinlik muhtemelen içeri giren materyalin bir sonucudur. Kara delik merkezleri Spiral bir galaksinin merkezinde en az bir süper kütleli kara delik bulunur. Dönüşü kendi diskinin dönüşünün tersi yönde olan bir kara delik, hiç püskürme gerçekleştirmeyen doğrusal yönlü bir kara deliğe göre çok daha güçlü püskürtmeler yapar. Bilim insanları, bir yığılma diskinin iç kenarı ile kara delik arasındaki boşluğa dayanarak ters yönlü kara deliklerin oluşumu ve evrimi için teorik bir çerçeve oluşturmuşlardır. Ayrıca bakınız Yarkovsky etkisi YORP etkisi İstisnai asteroitler listesi Kütleçekim kilidi Doğal uydular listesi Güneş sistemindeki nesnelerin kütleye göre listesi Güneş Sistemi'ndeki cisimlerin listesi Dipnotlar Kaynakça Konuyla ilgili yayınlar Retrograde-rotating exoplanets experience obliquity excitations in an eccentricity-enabled resonance , Steven M. Kreyche, Jason W. Barnes, Billy L. Quarles, Jack J. Lissauer, John E. Chambers, Matthew M. Hedman, 30 Mar 2020 How large is the retrograde annual wobble? , N. E. King, Duncan Carr Agnew, 1991. Dynamical Effects on the Habitable Zone for Earth-like Exomoons , Duncan Forgan, David Kipping, 16 April 2013 What collisional debris can tell us about galaxies , Pierre-Alain Duc, 10 May 2012 The Formation and Role of Vortices in Protoplanetary Disks , Patrick Godon, Mario Livio, 22 October 1999 Kategori:Yörüngeler Kategori:Hareketler Kategori:Astronomi
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri