Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Yüzey

bullvar_katip

Administrator
Katılım
21 Mayıs 2024
Mesajlar
532,105
Yüzey, matematikte ve özellikle topolojide iki boyutlu çokkatlı. İki gerçel değişkenli ve gerçel değerli bir fonksiyonun üç boyutlu uzayda (R3) grafiği tipik yüzey örneğidir. Ayrıca Dünya yüzeyi, bir yumurtanın kabuğu, bir simit birer yüzeydir. Bir yüzeyin iki boyutlu bir çokkatlı olması, öncelikle onun (belirli özellikleri sağlayan) bir topolojik uzay olması demektir. Bunun yanında yüzeyin verilen (herhangi) bir x noktası çevresinde öyle bir komşuluk bulunabilir ki, bu komşuluk 2 boyutlu uzayın bir parçasına benzer. Bu komşuluğa yama denir. Bu benzeme uyarınca, x çevresinde sağ-sol ve yukarı-aşağı kavramları iyi bir biçimde tanımlanabilir. Daha iyi bir deyişle, xin çevresine bir koordinat sistemi döşenebilir. Böylece yüzey, bir düzlem parçası olmasa bile x çevresindeki noktalar bir düzlemdeymiş gibi koordinatlara sahip olur. Dünya yüzeyi matematiksel olarak bir yüzeydir. Dünya'nın çizilen her haritası, yukarıdaki anlamda bir koordinat sistemi tarif eder. Bu sayede denizcilikte yön bulma kolaylaşır ve iki denizci aynı koordinat sisteminde konuşarak birbirleriyle anlaşabilir. Dünya yüzeyi için standart koordinat sistemi, enlem ve boylamlarla verilir. Örneğin, Dünya yüzeyinden gün dönümü çizgisi ve kutuplar silindiğinde kalan parçaya ( Doğu, Batı) ilâ ( Kuzey, Güney) koordinatları verilerek bu parça bir yamaya dönüştürülebilir. Gün dönümü çizgisi ya da kutupların silinmediği durumda bazı enlem-boylam çiftlerinin aynı noktayı tarif edeceklerine dikkat ediniz. Topolojik bir yüzey, her zaman R3'te görülemeyebilir. Örneğin gerçel izdüşümsel düzlem ya da Klein şişesi R3'te yatmazlar ancak R'e gömülebilirler. Topolojinin temel teoremlerinden biri, bir yüzeyi gömebilmek için en fazla dört boyuta (R) gerek olduğunu söyler. Matematiksel tanım İki boyutlu bir çokkatlıya yüzey denir. Daha ayrıntılı bir söyleyişle, (kenarı olmayan topolojik) yüzey, aşağıdaki koşulları sağlayan bir topolojik uzaydır: Hausdorff'tur; Herhangi bir noktasının çevresinde öyle bir açık komşuluk bulunabilir ki bu komşuluk R2'nin açık bir alt kümesine homeomorfiktir; (Kimi tanımlarda) İkinci sayılabilirlik özelliğini sağlar; (Kimi tanımlarda) Parakompakttır. Yukarıki tanımda ikinci koşulda R2 yerine, üst yarı düzlemi (yani ikinci koordinatları negatif olmayan noktaların kümesi) temsil etmek üzere H2 konduğunda, bu tanım, kenarı olan (kenarlı) topolojik bir yüzey tanımına dönüşür. Bu durumda ikinci koşulda homeomorfizma sözcüğünün anlamlı olabilmesi için H2 üzerinde bir topoloji bulunması gerekir. Bu topoloji standart olarak R2'den tetiklenen topolojidir. Kenarı olan bir yüzeyin kenarı olmayandan farklı olarak şu tür noktaları da vardır: noktanın yeterince küçük her komşuluğu H2'de çapı yarı düzlemin en altında oturan bir yarım daireye homeomorfiktir. Noktanın R2'de açık bir bölgeye homeomorfik bir komşuluğu olması söz konusu değildir. Kenarlı yüzeylere birkaç örnek: düzlemde kapalı bir daire, kapalı bir eğriyle çevrelenmiş bir düzlem bölgesi, bir yarıküre (içi boş), açık bir dairesel parçası koparılmış bir simit (yüzeyi). Bir yüzeyin içinde bir Möbius şeridi varsa (yüzeye gömülebiliyorsa) bu yüzeye yön verilemez denir. İçinde bir Möbius şeridi yoksa böyle bir yüzeye yön verilebilir denir. Yön verilemez yüzeylere birkaç örnek: Möbius şeridi, gerçel izdüşümsel düzlem, Klein şişesi. Bunlardan Möbius şeridi kenarı (bir çember) olan bir yüzeyken diğerleri kenarsız yüzeylerdir. Yüzeylerin sınıflandırılması Matematiğin temel uğraşlarından biri sınıflamadır. Tanımladığı bir nesne türünde, nesnelerin bazılarını bibirinden ayırt etmeden, olası tüm nesneleri listelemek sınıflamadaki amaçtır. Dolayısıyla yukarıda soyut tanımı verilen yüzeylerin tümünü listelemek, topolojinin ilgilendiği bir sorudur. Bunu yaparken iki homeomorfik yüzeyi bir tutar, bunların arasında ayrım gözetmez. Bu koşullar altında listeyi oluşturmaya çalışır. Örneğin bu listede (içi boş) bir küp ve bir küre birlikte görünmeyecektir; yalnızca biri listede yer alacaktır çünkü bu iki yüzey, R3'ten tetiklenen topolojileriyle birbirine homeomorfik yüzeylerdir. Şu ve benzeri soruların yanıtlanması gerekir: Bir küreyle bir simit, Möbius şeridiyle daire, kenarı olan yüzeyle olmayan ve yön verilebilir olanla olmayan birbirine homeomorfik midir? Yüzeylerin sınıflandırılması problemi ilk kez August Ferdinand Möbius tarafından çalışılmış ve R3'te yatan yön verilebilir yüzeyler için 1870 yılında sonuç ilan edilmiştir. Max Wilhelm Dehn ve P. Heegard 1907 yılında üçgenlenebilir yüzeyler için tüm sınıflandırmayı vermiştir. Her topolojik yüzeyin üçgenlenebilir olduğunu 1925 yılında Tibor Radó ispatlayarak sınıflandırmayı sona erdirmiştir (ispat için L. V. Ahlfors ve L. Sario'nun aşağıda listelenmiş kitabına bakınız). Bu sınıflandırmaya göre, tıkız, yön verilebilir, kenarsız yüzeyler, şunlardan biri(ne homeomorfik) olmak zorundadır: Dosya:yüzey sınıflandırması.jpg İlk şekil bir küredir (S2). İkincisi bir simit (T2). Üçüncü şekil çift delikli bir yüzeyi (F2) anlatır. Listede sırasıyla 3, 4, 5, ... delikli yüzeyler (sırasıyla F, F, F, ...) yer alacaktır. Dikkat edilirse, iki ayrı simitten birer daire oyulup kalan yüzeyler birbirlerine yapıştırılırsa, çıkan yüzey, iki delikli bir yüzey olacaktır. Üzerindeki topoloji, bu yapıştırma sırasında kullanılan özdeşleştirme aracılığıyla gelen bölüm topolojisidir. Bu işlem şöyle gösterilir: F = T2 # T2 Daireler oyarak yapıştırma işlemine bağlantılı toplam denir. Üç delikli bir yüzey, çift delikli bir yüzeyle torusun bağlantılı toplamı olarak inşa edilebilir. Bu sınıflandırmadan anlaşılıyor ki, tıkız, yön verilebilir, kenarsız yüzeyler delik sayılarıyla anlatılabilirler. Kürenin delik sayısına 0 diyoruz. Simidin delik sayısı 1'dir. Tıkız, yön verilebilir, kenarsız S adlı bir yüzey için 2 - 2g sayısı yüzeyin Euler sayısına eşittir ve şöyle gösterilir: . Yön verilemez yüzeyler için sınıflandırmaysa temelde aynı olmasına karşın, söz konusu yüzeylere daha az aşinayız. Tıkız, yön verilemez, kenarsız yüzeylerin en basiti gerçel izdüşümsel düzlemdir (RP2). Bu yüzey, bir Möbius şeridiyle bir dairenin kenarlarından birbirlerine yapıştırılmasıyla inşa edilir. Üzerindeki topoloji, bu yapıştırma aracılığıyla gelen bölüm topolojisidir. İki tane RP2'nin bağlantılı toplamına Klein şişesi (K2) denir: K2 = RP2 # RP2 Bu işlem iki Möbius şeridinin kenarlarından birbirlerine yapıştırılmasından başka bir şey değildir. Sınıflandırma şunu söyler: tıkız, yön verilemez, kenarsız yüzeyler aşağıdakilerden biri(ne homeomorfik) olmak zorundadır: RP2, K2 = RP2 # RP2, (RP2 # RP2 # RP2), (RP2 # RP2 # RP2 # RP'2), Gösterilebilir ki bu listedeki yüzeylerin Euler sayıları 1'den başlar ve birer birer azalır: Dolayısıyla, (tıkız, kenarsız) bir yüzeyin Euler sayısını ve yön verilebilir olup olmadığını söylemek, yüzeyi anlatmaya yeter. Kaynakça Kategori:Yüzeylerin diferansiyel geometri
 

Tema özelleştirme sistemi

Bu menüden forum temasının bazı alanlarını kendinize özel olarak düzenleye bilirsiniz.

Zevkine göre renk kombinasyonunu belirle

Tam ekran yada dar ekran

Temanızın gövde büyüklüğünü sevkiniz, ihtiyacınıza göre dar yada geniş olarak kulana bilirsiniz.

Izgara yada normal mod

Temanızda forum listeleme yapısını ızgara yapısında yada normal yapıda listemek için kullanabilirsiniz.

Forum arkaplan resimleri

Forum arkaplanlarına eklenmiş olan resimlerinin kontrolü senin elinde, resimleri aç/kapat

Sidebar blogunu kapat/aç

Forumun kalabalığında kurtulmak için sidebar (kenar çubuğunu) açıp/kapatarak gereksiz kalabalıklardan kurtula bilirsiniz.

Yapışkan sidebar kapat/aç

Yapışkan sidebar ile sidebar alanını daha hızlı ve verimli kullanabilirsiniz.

Radius aç/kapat

Blok köşelerinde bulunan kıvrımları kapat/aç bu şekilde tarzını yansıt.

Foruma hoş geldin 👋, Ziyaretçi

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı ya da giriş yapmalısınız. Foruma üye olmak tamamen ücretsizdir.

Geri